用户名: 密码: 验证码:
千岛湖水体氮的垂向分布特征及来源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The vertical distribution of nitrogen and the nitrogen sources in Qiandao Lake
  • 作者:金赞芳 ; 岑佳蓉 ; 胡宇铭 ; 郦林军 ; 李非里
  • 英文作者:JIN Zan-fang;CEN Jia-rong;HU Yu-ming;LI Lin-jun;LI Fei-li;College of Environment, Zhejiang University of Technology;
  • 关键词:硝酸盐 ; 垂向分布 ; 氮同位素 ; 氧同位素 ; 稳定同位素模型
  • 英文关键词:nitrate;;vertical distributions;;nitrogen isotopes;;oxygen isotopes;;SIAR
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:浙江工业大学环境学院;
  • 出版日期:2019-08-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金资助项目(41673097,41373122,41273129)
  • 语种:中文;
  • 页:307-315
  • 页数:9
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X524
摘要
选取千岛湖水深0.2, 5, 10, 20, 30和40m处水样进行分析,利用氮氧同位素和稳定同位素模型(SIAR)研究千岛湖水体氮(N)的垂向分布特征,分析水体N的来源并计算各N源的贡献率.结果表明,硝酸盐(NO_3~-)和溶解性有机氮(DON)是千岛湖水体总溶解氮(TDN)的主要形式,分别占溶解态N的57.9%和39.7%.千岛湖水体δ~(15)N-NO_3~-和δ~(18)O-NO_3~-的平均值分别为4.5‰和4.3‰.上层水体(0~10m)中,硝化作用和浮游植物的同化作用共同控制水体N的形态组成和氮氧同位素值(δ~(15)N-NO_3~-和δ~(18)O-NO_3~-)的变化.中层水体(10~30m)中,硝化作用是主要的生物地球化学过程,使得水体NO_3~-含量增加而δ~(18)O-NO_3~-值减小.底层水体(30~40m)受到硝化作用、底泥N释放和反硝化作用的共同影响.化肥是千岛湖水体NO_3~-的最主要来源,在S1和S2处的贡献率分别为51.9%和30.6%.新安江上游的农业面源污染使得S1处化肥贡献率远高于S2.土壤N是仅次于化肥的第二大水体NO_3~-来源,在S1和S2处的贡献率分别为17.8%和27.8%.此外,底泥对底层水体NO_3~-的贡献不可忽视.
        Water samples were collected at the depths of 0.2, 5, 10, 20, 30 and 40 m in Qiandao Lake. Concentrations of nitrogenous species and dual isotopes of nitrate(δ~(15)N-NO_3~-and δ~(18)O-NO_3~-) were analyzed to identify the vertical distribution of nitrogen and the main nitrate sources. The results showed that nitrate(NO_3~-) and dissolved organic nitrogen(DON) were the major nitrogenous species, accounting for 57.9% and 39.7% of total dissolved nitrogen, respectively. The values of δ~(15)N-NO_3~-ranged from 3.8‰ to 5.8‰ with a mean of 4.5‰, and the values of δ~(18)O-NO_3~-varied from 2.1‰ to 5.9‰, with a mean of 4.3‰ in Qiandao Lake. In the upper water(0~10 m), nitrification and assimilation of phytoplankton were the main biogeochemical processes. In the middle water(10~30 m), nitrification was the dominant biogeochemical process with the increasing concentrations of nitrate and the decrease of δ~(18)O-NO_3~-values. The bottom water(30~40 m) was affected by nitrification, nitrogen release from sediment and denitrification. The contributions of external sources(precipitation, sewage/manure, nitrogen fertilizer and soil nitrogen) and endogenous nitrogen source(sediment) were calculated by SIAR. It was showed that nitrogen fertilizer was the most important nitrate source in Qiandao Lake, accounting for 51.9% in S1 and 30.6% in S2. The agricultural non-point source pollution from Xinan River resulted in the higher contribution of nitrogen fertilizer in S1 than that in S2. The effect of soil nitrogen was also significant for the NO_3~-in Qiandao Lake, contributing 17.8% in S1 and 27.8% in S2. There was more serious soil erosion in S2 in central lake which is surrounded by mountains with more cultivated land on hillside. In addition, the results suggested that the endogenous nitrogen source(sediment) can't be neglected in the bottom water of Qiandao Lake.
引文
[1] Yao X L, Zhang Y L, Zhang L, et al. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs[J]. Journal of Environmental Sciences, 2017,66(4):274-285.
    [2]石效卷.中国饮用水水源环境安全[J].中国环境管理干部学院学报, 2012,22(1):1-6.Shi X J. The safety of drinking water sources in China[J]. Journal of EMCC, 2012,22(1):1-6.
    [3]吴志旭,刘明亮,兰佳,等.新安江水库(千岛湖)湖泊区夏季热分层期间垂向理化及浮游植物特征[J].湖泊科学, 2012,24(3):460-465.Wu Z X, Liu M L, Lan J, et al. Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao)in subtropic China during summer stratification[J]. Journal of Lake Sciences, 2012,24(3):460-465.
    [4]邱晓鹏,黄廷林,曾明正.溶解氧对湖库热分层和富营养化的响应—以枣庄周村水库为例[J].中国环境科学, 2016,36(5):1547-1553.Qiu X P, Huang T L, Zeng M Z. Responses of dissolved oxygen on thermal stratification and eutrophication in lakes and reservoirs—An example in Zhoucun Reservoir in Zaozhuang City[J]. China Environmental Science, 2016,36(5):1547-1553.
    [5]夏品华,林陶,李存雄,等.贵州高原红枫湖水库季节性分层的水环境质量响应[J].中国环境科学, 2011,31(9):1477-1485.Xia P H, Lin T, Li C X, et al. Features of the water column stratification and the response of water quality of Hongfeng reservoir in Guizhou, China[J]. China Environmental Science, 2011,31(9):1477-1485.
    [6] Xu S, Kang P, Sun Y. A stable isotope approach and its application for identifying nitrate source and transformation process in water[J].Environmental Science and Pollution Research International, 2015,23(2):1133-1148.
    [7] Li D, Jiang X, Zheng B. Usingδ15N andδ18O Signatures to evaluate nitrate sources and transformations in four inflowing Rivers, North of Taihu Lake[J]. Water, 2017,9(5):345-360.
    [8] Yue F J, Li S L, Liu C Q, et al. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 2017,7(1):506-515.
    [9] Swart P K, Evans S, Capo T, et al. The fractionation of nitrogen and oxygen isotopes in macroalgae during the assimilation of nitrate[J].Biogeosciences, 2014,11(21):6147-6157.
    [10] Xue D, Botte J, Baets B D, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater[J]. Water Research, 2009,43(5):1159-1170.
    [11] Wenk C B, Zopfi J, Blees J, et al. Community N and O isotope fractionation by sulfide-dependent denitrification and anammox in a stratified lacustrine water column[J]. Geochimica et Cosmochimica Acta, 2014,125:551-563.
    [12] Yang L, Han J, Xue J, et al. Nitrate source apportionment in a subtropical watershed using Bayesian model[J]. Science of the Total Environment, 2013,463-464(5):340-347.
    [13] Meghdadi A, Javar N. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multiisotope approach and Bayesian isotope mixing model[J].Environmental Pollution, 2018,235:207-222.
    [14] Zhang Y, Shi P, Li F, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018,208:493-501.
    [15]金赞芳,张文辽,郑奇,等.氮氧同位素联合稳定同位素模型解析水源地氮源[J].环境科学, 2018,39(5):2039-2047.Jin Z F, Zhang W L, Zheng Q, et al. Contribution of nitrogen sources in water sources by combining nitrogen and oxygen isotopes and SIAR[J]. Environmental Science, 2018,39(5):2039-2047.
    [16]何剑波.千岛湖水温、溶解氧及叶绿素a垂向特征研究[D].杭州:浙江工业大学, 2014.He J B. Vertical characteristics of water temperature, dissolved oxygen and Chlorophyll a in Qiandaohu Lake[D]. Hangzhou:Zhejiang University of Technology, 2014.
    [17]周骅,徐锋杰,曹彧.浅谈大型线性水利工程政策处理的工作机制—以杭州市第二水源千岛湖配水工程为例[J].浙江水利科技,2017,213:40-48.Zhou Y, Xue F J, Cao Y. The Working Mechanism of large-scale linear hydraulic engineering policy—the water supply project of Qiandao Lake in the second water source of Hangzhou as an example[J].Zhejiang Hydrotechnics, 2017,213:40-48.
    [18]张红举,彭树恒,周娅,等.千岛湖现状污染负荷分析与限制排污总量研究[J].水资源保护, 2014,30(4):53-56.Zhang H J, Peng S H, Zhou Y, et al. Analysis of current pollutant loads and investigation of total pollutant discharge limits in Qiandao Lake[J]. Water Resources Protection, 2014,30(4):53-56.
    [19] Zhou Y, Zhang Y, Jeppesen E, et al. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake[J]. Water Research, 2016,100:211-221.
    [20]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:670-671.National Environmental Protection Administration, Editorial Board for Water and Wastewater Monitoring and Analysis Methods. Water and wastewater monitoring and analysis methods[M]. Fourth edition.Beijing:China Environmental Science Press, 2002:670-671.
    [21] Casciotti K L, Sigman D M, Hastings M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method[J]. Analytical Chemistry, 2002,74(19):4905-4912.
    [22] Parnell A C, Inger R, Bearhop S, et al. Source Partitioning Using Stable Isotopes:Coping with Too Much Variation[J]. PLOS ONE,2010,5(3):e9672.
    [23]黄廷林,曾明正,邱晓鹏,等.温带季节性分层水库浮游植物功能类群的时空演替[J].中国环境科学, 2016,36(4):1157-1166.Huang T L, Zeng M Z, Qiu X P, et al. Phytoplankton functional groups and their spatial and temporal distribution characteristics in a temperate seasonally stratified reservoir[J]. China Environmental Science, 2016,36(4):1157-1166.
    [24]黄健.间歇曝气条件下河流内源氮转化及微生物机制[D].合肥:安徽大学, 2018.Huang J. Research on transformation of endogenous nitrogen and mechanism of microorganism by intermittent aeration in polluted river[D]. Hefei:Anhui University, 2018.
    [25]陈藜藜.珠三角典型富营养化状态湖库的氮形态研究[D].广州:暨南大学, 2015.Chen L L. Research on nitrogen forms in typical entrophication lakes and reservoirs in the Pearl River Delta region[D]. Guangzhou:Jinan University, 2015.
    [26]司圆圆,陈兴汉,许瑞雯,等.好氧反硝化细菌脱氮研究进[J].山东化工, 2018,47(4):157-158.Si Y Y, Chen X H, Xu R W, et al. Progress on the studies of aerobic denitrifier[J]. Shandong Chemical Industry, 2018,47(4):157-158.
    [27] Bronk D A, Glibert P M, Ward B B. Nitrogen Uptake, Dissolved Organic Nitrogen Release, and New Production[J]. Science, 1994,265(5180):1843-1846.
    [28] Michener R, Lajtha K. Stable isotopes in ecology and environmental science[M]. Oxford, UK:Blackwell, 2008,375-449.
    [29] Jin Z, Zheng Q, Zhu C, et al. Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model[J]. Applied Geochemistry, 2018,93:10-19.
    [30] Wang Z J, Yue F J, Li S L, et al. Nitrate dynamics during impoundment and flood periods in a subtropical karst reservoir:Hongfeng Lake, Southwestern China[J]. Environmental Science Processes&impacts, 2018,20:1736-1745.
    [31] Yue F J, Li S L, Liu C Q, et al. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 2017,7(1):506-515.
    [32]孔樟良.建德市不同农作系统肥料结构的调查与分析[J].农学学报, 2015,5(7):81-86.Kong Z L. Investigation and analysis of fertilizer structure of different farming systems in Jiande City[J]. Journal of Agriculture, 2015,5(7):81-86.
    [33]张扬.不同盐度、底泥及扰动条件下再生水补水景观水体水质变化[D].西安:西安建筑科技大学, 2017.Zhang Y. Effect of different salinity, sediment and change rule on water quality variations of the pond replenished by reclaimed water[D]. Xian:Xi’an University of Architecture and Technology, 2017.
    [34]文帅龙,吴涛,杨洁,等.冬季大黑汀水库沉积物-水界面氮磷赋存特征及交换通量[J].中国环境科学, 2019,39(3):1217-1225.Wen S L, Wu T, Yang J, et al. Distribution characteristics and exchange flux of nitrogen and phosphorus at the sediment-water interface of Daheiting Reservoir in winter[J]. China Environmental Science, 2019,39(3):1217-1225.
    [35] Buchwald C, Casciotti K L. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation[J]. Limnology and Oceanography, 2010,55(3):1064-1074.
    [36] Bardhan P, Naqvi S W A, Karapurkar S G, et al. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India:implications for biogeochemical processes[J].Biogeosciences, 2017,14(4):1-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700