用户名: 密码: 验证码:
植物对重金属镉的吸收与耐受机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plant Absorption and Tolerance Mechanism to Heavy Metal Cadmium: Research Progress
  • 作者:晋海军 ; 王海霞
  • 英文作者:Jin Haijun;Wang Haixia;Guizhou University of Traditional Chinese Medicine;
  • 关键词:金属 ; ; 富集 ; 吸收 ; 转运 ; 耐受机制
  • 英文关键词:heavy metal;;Cd~(2+);;accumulation;;absorption;;transportation;;tolerance mechanism
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:贵州中医药大学;
  • 出版日期:2019-08-23
  • 出版单位:中国农学通报
  • 年:2019
  • 期:24
  • 基金:贵州省国内一流建设学科(中药学)(GNYL[2017]008号);; 贵州省科技计划项目(黔科合LH字[2016]7117);; 贵阳中医学院2018年度学术新苗培养及创新探索专项项目(黔科合平台人才[2017]5735号-19);; 贵阳中医学院博士科研启动金项目“不同产地续断药材iTRAQ定量蛋白质组学研究”(043160005)
  • 语种:中文;
  • 页:58-63
  • 页数:6
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:X173;X53
摘要
为了有效降低土壤中含量,保障人类健康,人们希望通过一种经济、有效的方法——植物修复技术来治理土壤污染。因此,植物对重金属镉的吸收与耐受机制研究,已成为近年来植物逆境生理研究的热点。笔者主要综述了植物对的吸收、转运及积累机制,以及植物体通过细胞壁的沉积、细胞区室化、螯合作用和抗氧化系统的保护作用对的耐受机制,以期为今后通过植物修复技术更好治理土壤污染提供基础资料。
        In order to effectively reduce the cadmium content in soil and protect human health, it is hoped that an economical and effective method(phytoremediation technology) can be used to control soil cadmium pollution. Therefore, the study on the mechanism of plant absorption and tolerance to heavy metal cadmium has become a hot spot in plant stress physiology research in recent years. The authors reviewed the mechanisms of cadmium uptake, transport and accumulation of plant, as well as the tolerance mechanism of plant to cadmium through cell wall deposition, cell compartmentalization, chelation and antioxidant system protection, so as to provide basic information for better control of soil cadmium pollution through phytoremediation technology in the future.
引文
[1]何启贤.超富集植物筛选研究进展[J].环境保护与循环经济,2013(1):46-49.
    [2]吴春蕾,丁朝阳,吴志鹏.探讨植物修复技术及其在环境污染中的应用[J].哈尔滨师范大学:自然科学学报,2017(1):102-105.
    [3]高宇,程潜,张梦君,等.污染土壤修复技术研究[J].生物技术通报,2017,33(10):103-110.
    [4]刘明浩,陈光辉,王悦.植物耐机制研究进展[J].作物研究,2015(1):101-105.
    [5] Neilson S, Rajakaruna N. Phytoremediation of agricultural soils:using plants to clean metal-contaminated arable land[M].Phytoremediation:Springer,2015:159-168.
    [6]赵会会,方志刚,马睿,等.耐根际促生菌的筛选及其对一年生黑麦草吸收积累的影响[J].草地学报,2017,25(3):554-560.
    [7]张小川.绿穗苋对的耐性和富集特征研究[D].成都:四川农业大学,2011:16-18.
    [8]廉梅花,孙丽娜,胡筱敏,等.pH对不同富集能力植物根际土壤溶液中形态的影响[J].生态学杂志,2015,34(1):130-137.
    [9]张玉秀,于飞,张媛雅,等.植物对重金属镉的吸收转运和累积机制[J].中国生态农业学报,2008,16(5):1317-1321.
    [10]能凤娇,刘鸿燕,马莹,等.根际促生菌在植物修复重金属污染土壤中的应用研究进展[J].中国农学通报,2013,29(5):187-191.
    [11]罗方舟,向垒,李慧,等.丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J].农业环境科学学报,2015,34(6):1090-1095.
    [12] Chai M W, Shi F C, Li R L, et al. Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2stress[J].South African Journal of Botany,2013,85:63-69.
    [13]徐劼,保积庆.芹菜根细胞壁对的吸附固定机制及其FTIR表征研究[J].环境科学学报,2015(08):2605-2612.
    [14]刘利,郝小花,田连福,等.植物吸收、转运和积累的机理研究进展[J].生命科学研究.2015,19(2):176-184.
    [15]徐佩贤.高羊茅和草地早熟禾对的耐受能力和解毒机制研究[D].上海:上海交通大学,2014:73-76.
    [16]王岚,戴闽玥,严重玲.磷交互作用对白骨壤幼苗体内的亚细胞分布和生理特性的影响[J].农业环境科学学报,2018,37(4):640-646.
    [17]金倩.超富集植物牛膝菊(Galinsoga parviflora)的抗氧化酶活性变化与光合特性研究[D].成都:四川农业大学,2014:19-23.
    [18] Haag-Kerwer A, Sch?fer H J, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J].Journal of Experimental Botany,1999,50(341):1827-1835.
    [19]李江遐,张军,马友华,等.不同水稻品种对的吸收转运及其非蛋白巯基含量的变化[J].生态环境学报,2017(12):2140-2145.
    [20]杨居荣,何孟常,查燕,等.稻、麦籽实中Cd的结合形态[J].中国环境科学,2000,20(5):404-408.
    [21]查燕,杨居荣,刘虹,等.污染谷物中重金属的分布及加工过程的影响[J].环境科学,2000,21(3):52-55.
    [22]苗欣宇,周启星.污染土壤植物修复效率影响因素研究进展[J].生态学杂志,2015,34(03):870-877.
    [23]王冬柏,朱健,王平,等.环境材料原位固定修复土壤重金属污染研究进展[J].中国农学通报,2014,30(08):181-185.
    [24]莫基浩.拟南芥根细胞壁中的果胶含量对植物抗胁迫的影响[D].杭州:浙江大学,2010:25-27.
    [25]黄白飞,辛俊亮.植物积累重金属的机理研究进展[J].草业学报,2013:300-307.
    [26] Cosio C, Vollenweider P, Keller C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow(Salix viminalis L.):I. Macrolocalization and phytotoxic effects of cadmium[J].Environmental and Experimental Botany,2006,58(1):64-74.
    [27]王芳,杨勇,张燕,等.不同蔬菜对的吸收累积及亚细胞分布[J].农业环境科学学报,2009,28(1):44-48.
    [28]李春烨,丁国华,刘保东.重金属影响植物细胞超微结构和功能的研究进展[J].中国农学通报,2013,29(18):114-118.
    [29]周全,王宏,张迎信,等.不同浓度处理下水稻植株含量变化及其调控相关基因表达分析[J].中国水稻科学,2016,30(4):380-388.
    [30] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212(4):475-486.
    [31]彭佳师,丁戈,易红英,等.伴矿景天植物螯合肽合酶基因的克隆及功能分析[J].植物生理学报,2014,50(5):625-633.
    [32] Gaur J P, Rai L C. Heavy metal tolerance in algae[M].Algal Adaptation to Environmental Stresses:Springer,2001:363-388.
    [33]仇硕,张敏,孙延东,等.植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展[J].西北植物学报,2006,26(12):2615-2622.
    [34]张瑜,侯和胜.藻类与高等植物中植物螯合肽(PCs)的研究进展[J].天津农业科学,2014,20(4):11-13.
    [35]迟春宁,丁国华.植物耐重金属的分子生物学研究进展[J].生物技术通报,2017,33(03):6-11.
    [36] Ma M, Lau P, Jia Y, et al. The isolation and characterization of Type1 metallothionein(MT)cDNA from a heavy-metal-tolerant plant,Festuca rubra cv. Merlin[J].Plant Science,2003,164(1):51-60.
    [37]秦丽,何永美,李元,等.Cd胁迫对续断菊Cd吸收分配及有机酸代谢的影响[J].环境化学,2016,35(08):1592-1600.
    [38]乔旭,王沛芳,郑莎莎,等.水生植物去除重金属机制及生理响应研究综述[J].长江科学院院报,2015(05):15-20.
    [39] Fidalgo F, Freitas R, Ferreira R, et al. Solanum nigrum L.antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress[J].Environmental and Experimental Botany,2011,72(2):312-319.
    [40]徐佳佳,刘宁宁,秦丽,等.胁迫对续断菊与玉米间作体系中植物叶片抗氧化酶活性的影响[J].云南农业大学学报:自然科学,2016,30(2):348-355.
    [41]邓勇,黄思齐,李建军,等.胁迫下红麻幼根的生理响应[J].中国麻业科学,2016,38(2):89-94.
    [42]赵胡,郑文教,陈杰.土壤污染对大蒜幼苗生长及根系抗氧化系统的影响[J].生态学杂志,2008,27(5):771-775.
    [43]汤叶涛,关丽捷,仇荣亮,等.对超富集植物滇苦菜抗氧化系统的影响[J].生态学报,2010,30(2):324-332.
    [44] Zhang F, Meng H, Shen Z, et al. Anti-oxidative response of Phaseolus aureus Roxb. and Vicia sativa L. to cadmium stress[J].Acta Botanica Boreali-occidentalia Sinica,2006,26(7):1384.
    [45]赵婷,韩小娇,刘明英,等.东南景天耐相关基因SaFer的克隆与功能初步分析[J].浙江农林大学学报,2015,32(01):25-32.
    [46]李慧园,田春育,郑玉莹,等.黄瓜耐相关基因CsNAC019的克隆及表达分析[J].中国农业科学,2017,50(10):1855-1864.
    [47]周全,王宏,张迎信,等.不同浓度处理下水稻植株含量变化及其调控相关基因表达分析[J].中国水稻科学,2016,30(4):380-388.
    [48] Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].The Plant Cell,2012,24(5):2155-2167.
    [49] Safavi K, Asgari M J. Heavy metal resistance in transgenic plants[C].International Conference on Food Engineering and Biotechnology,2011,9:286-290.
    [50] Luo J, Huang J, Zeng D, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J].Nature communications,2018,9(1):645.
    [51] Chen J, Yang L, Gu J, et al. MAN 3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J].New Phytologist,2015,205(2):570-582.
    [52] Kulaeva O A, Tsyganov V E. Molecular-genetic basis of cadmium tolerance and accumulation in higher plants[J].Russian Journal of Genetics Applied Research,2011,1(5):349.
    [53] Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].Plant Journal,2012,69(2):278-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700