用户名: 密码: 验证码:
2种养分水平条件下大麦幼苗对重金属铜胁迫的生长响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth performance of barley seedlings in response to copper stress under two nutrient levels
  • 作者:魏嘉禾 ; 陈斌
  • 英文作者:WEI Jiahe;CHEN Bin;Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University;College of Biology and the Environment, Nanjing Forestry University;
  • 关键词:铜胁迫 ; 大麦 ; 生长抑制 ; 霍格兰营养液 ; 根冠比 ; 叶绿素 ; 抗氧化酶
  • 英文关键词:copper stress;;Hordeum vulgare;;growth inhibition;;Hoagland solution;;root to shoot mass ratio;;chlorophyll;;antioxidant enzymes
  • 中文刊名:安徽农业大学学报
  • 英文刊名:Journal of Anhui Agricultural University
  • 机构:南京林业大学南方现代林业协同创新中心;南京林业大学生物与环境学院;
  • 出版日期:2019-07-18 17:57
  • 出版单位:安徽农业大学学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金(31600328);; 江苏省自然科学基金(BK20160924)共同资助
  • 语种:中文;
  • 页:159-164
  • 页数:6
  • CN:34-1162/S
  • ISSN:1672-352X
  • 分类号:X503.231;S512.3
摘要
以大麦(Hordeum vulgare)幼苗为研究材料,采用10%和35%浓度霍格兰营养液(Hoagland solution)2种养分水平和0、1和10 mg?L-1 3种铜胁迫水平的正交试验设计,开展为期3周的水培试验,研究养分水平对重金属铜胁迫植物生长的影响。结果表明,与10%霍格兰液相比,35%霍格兰液可提高大麦幼苗在铜胁迫时的生物量积累,增加叶片叶绿素含量以及抗氧化酶活性。但这种缓解作用受铜胁迫水平的影响。在1mg?L-1铜胁迫水平时,提升营养液水平可显著提高植株生物量、叶片叶绿素含量和超氧化物歧化酶(SOD)活性;而在10mg?L-1铜胁迫水平时提升营养液水平亦可显著提高叶片过氧化物酶(POD)和谷胱甘肽过氧化物酶(GPX)活性,但对叶绿素含量无影响。此外,铜胁迫对根系生长的抑制作用强于对地上部分的抑制;10%霍格兰液条件下,1 mg?L-1铜胁迫与无胁迫处理相比可显著增加叶片叶绿素相对含量。提高养分供给是增强大麦耐受铜胁迫能力的一个重要途径。
        To explore the effects of nutrients on the performance of plants in response to copper(Cu) stress,we conducted a three-week hydroponic experiment with barley(Hordeum vulgare) seedlings, using two nutrient levels(10% and 35% Hoagland solutions) and three Cu stress levels(0, 1 and 10 mg?L-1). The results showed that35% Hoagland solution, compared to 10% Hoagland solution, generally increased the biomass, leaf relative chlorophyll content(RCC) and activities of antioxidant enzymes of barley seedlings under Cu stress. However, the degrees of these alleviation effects varied with the levels of Cu stress. Under the level of 1 mg?L-1 Cu stress, more nutrient supply, in terms of the use of 35% as compared to 10% Hoagland solution, significantly increased plant biomass, RCC and the activity of superoxide dismutase(SOD); while under the level of 10 mg?L-1 Cu stress, more nutrient supply also significantly increased the activities of peroxidase(POD) and glutathione peroxidases(GPX)but had no effect on RCC. In addition, the inhibition effects of Cu stress were stronger on root growth than on aboveground growth. Under 10% Hoagland solution condition, the level of 1 mg?L-1 Cu stress significantly increased RCC as compared to that in the control treatment. These results suggested that increasing nutrient supply can enhance the growth tolerance of barley to Cu stress.
引文
[1]GRAT?O P L,POLLE A,LEA P J,et al.Making the life of heavy metal-stressed plants a little easier[J].Funct Plant Biol,2005,32(6):481-494.
    [2]李洋,于丽杰,金晓霞.植物重金属胁迫耐受机制[J].中国生物工程杂志,2015,35(9):94-104.
    [3]BURKHEAD J L,GOGOLIN R K A,ABDEL-GHANY SE,et al.Copper homeostasis[J].New Phytol,2009,182(4):799-816.
    [4]FERNANDES J C,HENRIQUES F S.Biochemical,physiological,and structural effects of excess copper in plants[J].Bot Rev,1991,57(3):246-273.
    [5]BERNAL M,CASERO D,SINGH V,et al.Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis[J].The Plant Cell,2012,24(2):738-761.
    [6]LANGE B,VAN DER ENT A,BAKER A J M,et al.Copper and cobalt accumulation in plants:a critical assessment of the current state of knowledge[J].New Phytol,2017,213(2):537-551.
    [7]WARAICH E A,AHMAD R,HALIM A,et al.Alleviation of temperature stress by nutrient management in crop plants:a review[J].J Soil Sci Plant Nutr,2012,12(2):221-244.
    [8]张永清,苗果园.不同施肥水平下黍子根系对干旱胁迫的反应[J].作物学报,2006,32(4):601-606.
    [9]沈其荣,沈振国,刘兆普,等.盐胁迫下氮素营养对大麦苗吸收K+、Na+的影响[J].土壤通报,1992,23(5):211-212.
    [10]董姬妃,张帆,胡雨寒,等.镉胁迫下增施氮对白三叶草生长的影响和镉毒害的缓解效应研究[J].草业学报,2017,26(9):83-91.
    [11]冯圣东,王伟,石维,等.施用有机肥对Hg胁迫葡萄叶片生化特性的影响[J].水土保持学报,2015,29(2):288-293.
    [12]OERKE E C,DEHNE H W.Safeguarding production:losses in major crops and the role of crop protection[J].Crop Prot,2004,23(4):275-285.
    [13]JUKNYS R,VITKAUSKAIT?G,RA?AIT?M,et al.The impacts of heavy metals on oxidative stress and growth of spring barley[J].Cent Eur J Biol,2012,7(2):299-306.
    [14]BUNLUESIN S,KRUATRACHUE M,POKETHITI-YOOK P,et al.Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation[J].Bull Environ Contam Toxicol,2004,73(3):591-598.
    [15]GERSANI M,BROWN J S,O'BRIEN E E,et al.Tragedy of the commons as a result of root competition[J].J Ecol,2001,89(4):660-669.
    [16]刘小娟,解静芳,范仁俊,等.太原市污灌区土壤有效态铜锌和锰含量评价[J].农业环境科学学报,2010,29(3):506-509.
    [17]陈雪梅,王友保,姚婧,等.磷、铜及其相互作用对三叶草种子萌发与幼苗生长的影响[J].生态学杂志,2008,27(6):956-961.
    [18]饶通德,张静宇,余顺慧,等.钾肥对延胡索植株铜污染的缓解作用[J].环境科学与技术,2017,40(3):85-90.
    [19]WU F B,ZHANG G P.Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley[J].JPlant Nutr,2002,25(12):2745-2761.
    [20]ZVOBGO G,HU H L,SHANG S H,et al.The effects of phosphate on arsenic uptake and toxicity alleviation in tobacco genotypes with differing arsenic tolerances[J].Environ Toxicol Chem,2015,34(1):45-52.
    [21]帕孜来提·拜合提,祁要鹏,阿孜古丽·玉苏甫,等.铜胁迫对两种地衣植物生理生化特征的影响[J].生态环境学报,2010,19(11):2708-2712.
    [22]努扎艾提·艾比布,刘云国,宋华晓,等.重金属Zn Cu对香根草生理生化指标的影响及其积累特性研究[J].农业环境科学学报,2010,29(1):54-59.
    [23]齐雪梅,李培军,刘宛,等.Cu对大麦和玉米的毒性效应[J].农业环境科学学报,2006,25(2):286-290.
    [24]李向科,张义贤.重金属Cd2+Pb2+Cu2+在大麦幼苗体内积累与分布的研究[J].农业环境科学学报,2007,26(增刊):484-488.
    [25]张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    [26]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700