用户名: 密码: 验证码:
螯合剂对油葵修复镉砷复合污染土壤的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of chelating agents on remediation of cadmium and arsenic complex contaminated soil using oil sunflower
  • 作者:韩廿 ; 黄益宗 ; 魏祥东 ; 铁柏清 ; 张盛楠 ; 王丙烁 ; 保琼莉 ; 黄永春
  • 英文作者:HAN Nian;HUANG Yi-zong;WEI Xiang-dong;TIE Bai-qing;ZHANG Sheng-nan;WANG Bing-shuo;BAO Qiong-li;HUANG Yong-chun;Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs;College of Resources and Environment, Hunan Agricultural University;
  • 关键词:农田 ; 重金属 ; 油葵 ; 螯合剂 ; 植物修复 ; 萃取技术
  • 英文关键词:farmland;;heavy metal;;oil sunflower;;chelating agent;;phytoremediation;;extraction technology
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:农业农村部环境保护科研监测所;湖南农业大学资源环境学院;
  • 出版日期:2019-08-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2017YFD0801500);; 国家科技支撑计划项目(2015BAD05B02)~~
  • 语种:中文;
  • 页:234-243
  • 页数:10
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X173;X53
摘要
为提高油葵对农田土壤重金属的提取效率,研究了不同螯合剂(NTA、EGTA、EDDS和EDTA)对油葵修复Cd、As复合污染农田土壤的影响。结果表明,施用4种不同螯合剂对油葵根、茎、叶、花盘和籽粒生物量影响不大。不同螯合剂对油葵各器官Cd、As含量和积累量影响不一样。与CK处理相比,施用NTA、EGTA、EDDS、EDTA导致油葵花盘Cd含量分别提高30.2%、55.1%、41.9%和43.3%,根系As含量分别提高23.6%、18.1%、15.6%和15.4%,但是对籽粒和茎中Cd含量影响不显著。施用NTA、EGTA、EDDS和EDTA处理使油葵植株总Cd积累量分别比CK处理提高32.8%、45.3%、40.5%和41.6%,而对油葵As积累量没有显著影响。4种螯合剂对油葵各器官Cd、As富集系数有不同影响,而对Cd、As转运系数影响不显著。施用EDTA处理使根际土壤Cd含量比CK处理降低25.0%,施用NTA和EDTA处理使根际土壤As含量分别降低18.1%和14.3%。4种螯合剂均可以提高油葵对Cd、As污染土壤的修复效率。
        To identify measures to improve the heavy metal extraction efficiency of oil sunflower on farmland soil, the effect of different chelating agents(NTA, EGTA, EDDS, and EDTA)on the remediation of Cd and As complex-contaminated soil by oil sunflower were studied.The results showed the application of the four different chelating agents had little effect on the biomass of roots, stems, leaves, disk, and grain of oil sunflower. Different chelating agents had different effects on Cd and As concentrations and accumulation in different organs of the oil sunflower. Compared with the CK treatment, the application of NTA, EGTA, EDDS, and EDTA increased the Cd concentration in oil sunflower disk by 30.2%, 55.1%, 41.9%, and 43.3%, respectively, and the As concentration in oil sunflower root increased by 23.6%,18.1%, 15.6%, and 15.4%, respectively. However, the effect on Cd concentration in oil sunflower grains and stems was not significant.Treatment with NTA, EGTA, EDDS, and EDTA increased the total Cd accumulation of oil sunflower plants by 32.8%, 45.3%, 40.5%, and41.6%, respectively, but had no significant effect on the accumulation of As in oil sunflower. The four chelating agents had different effects on the Cd and As enrichment coefficients of oil sunflower but had no significant effect on Cd and As transport coefficients. Treatment with NTA and EDTA resulted in a decrease of 21.1% and 25.0%, respectively, in soil Cd concentrations and a decrease of 18.1% and 14.3%, respectively, in soil As concentrations. These four chelating agents can be used to improve the remediation efficiency of oil sunflower on Cd and As contaminated soil.
引文
[1]胡红青,黄益宗,黄巧云,等.农田土壤重金属污染化学钝化修复研究进展[J].植物营养与肥料学报, 2017, 23(6):1676-1685.HU Hong-qing, HUANG Yi-zong, HUANG Qiao-yun, et al. Research progress of heavy metals chemical immobilization in farm land[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1676-1685.
    [2]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013, 32(3):409-417.HUANG Yi-zong, HAO Xiao-wei, LEI Ming, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417.
    [3]秦樊鑫,魏朝富,李红梅.重金属污染土壤修复技术综述与展望[J].环境科学与技术, 2015, 38(12Q):199-208.QIN Fan-xin, WEI Chao-fu, LI Hong-mei. Current research in remediation of soils contaminated by heavy metals[J]. Environmental Science&Technology, 2015, 38(12Q):199-208.
    [4]孙晋伟,黄益宗,石孟春,等.土壤重金属生物毒性研究进展[J].生态学报, 2008, 28(6):2861-2869.SUN Jin-wei, HUANG Yi-zong, SHI Meng-chun, et al. The review of heavy metals biotoxicity in soil[J]. Acta Ecologica Sinica, 2008, 28(6):2861-2869.
    [5]黄益宗,郝晓伟.赤泥、骨炭和石灰对玉米吸收积累As、Pb和Zn的影响[J].农业环境科学学报, 2013, 32(3):456-462.HUANG Yi-zong, HAO Xiao-wei. Effects of red mud, bone char and lime on the absorption and accumulation of As, Pb and Zn in maize[J].Journal of Agro-Environment Science, 2013, 32(3):456-462.
    [6] Yeasmin J, Ashraful I, Shawkat A. Transfer of metals from soil to vegetables and possible health risk assessment[J]. Springer Plus, 2013, 2(1):385-393.
    [7]宋玉婷,彭世逞.我国土壤重金属污染状况及其防治对策[J].吉首大学学报(自然科学版), 2018, 39(5):76-81.SONG Yu-ting, PENG Shi-zhen. Current situation of soil heavy metal pollution in China and countermeasures[J]. Journal of Jishou University(Natural Science Edition), 2018, 39(5):71-76.
    [8]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2000, 21(7):1196-1203.WEI Chao-yang, CHEN Tong-bin. Hyperaccumulators and phytoremediation of heavy metal contaminated soil:A review of studies in China and abroad[J]. Acta Ecologica Sinica, 2000, 21(7):1196-1203.
    [9]罗琼,何录秋,杨文淼.油葵修复重金属污染农田研究进展[J].现代农业科技, 2016, 5:225-226.LUO Qiong, HE Lu-qiu, YANG Wen-miao. Research progress of oil sunflower repairing heavy metals contaminated farmland[J]. Modern Agricultural Science and Technology 2016, 5:225-232.
    [10] Chen H, Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus[J]. Chemosphere, 2001, 45(1):21-28.
    [11]牛之欣,孙丽娜,孙铁珩.水培条件下四种植物对Cd、Pb富集特征[J].生态学杂志, 2010, 29(2):261-268.NIU Zhi-xin, SUN Li-na, SUN Tie-heng. Enrichment characteristics of Cd and Pb by four kinds of plant under hydroponic culture[J]. Chinese Journal of Ecology, 2010, 29(2):261-268.
    [12]杨洋,陈志鹏,黎红亮,等.两种农业种植模式对重金属土壤的修复潜力[J].生态学报2016, 36(3):688-695.YANG Yang, CHEN Zhi-peng, LI Hong-liang, et al. The potential of two agricultural cropping patterns for remediating heavy metals from soils[J]. Acta Ecologica Sinica, 2016, 36(3):688-695.
    [13]王开爽,吉凡,王莉,等.螯合诱导技术强化植物修复铅污染土壤的研究现状及展望[J].安徽农学通报, 2014, 20(9):100-102.WANG Kai-Shuang, JI Fan, WANG Li, et al. Present situation and prospect on application of chelate induced phytoremediation of lead contaminated soils[J]. Anhui Agricultural Science Bulletin, 2014, 20(9):100-102.
    [14] Mertens J, Luyssaert S, Verheyen K. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction[J]. Environmental Pollution, 2005, 138(1):1-4.
    [15] Mcgrath S P, Zhao F J. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 2003, 14(3):277-282.
    [16] Zhao F J, Lombi E, Mcgrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249(1):37-43.
    [17] Sun Y, Zhou Q, Diao C. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5):1103-1110.
    [18] Yang G, Chiyuan M, Liang Ma, et al. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid[J].Journal of Hazardous Materials, 2010, 181(1/2/3):771-777.
    [19] Joao P, Ines L, Pedro P, et al. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals[J]. Chemosphere,2008, 71(1):66-73.
    [20]张云霞,宋波,宾娟,等.超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J].环境科学, 2019, 40(5):2453-2459.ZHANG Yun-xia, SONG Bo, BIN Juan, et al. Remediation potential of Ageratum conyzoides L. on cadmium contaminated farmland[J]. Environmental Science, 2019, 40(5):2453-2459.
    [21] Luo C, Shen Z, Li X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS[J]. Chemosphere, 2005, 59(1):1-11.
    [22]胡容平,石军,黄廷友,等.土施超富集植物秸秆对荠菜生长及镉积累的影响[J].水土保持通报, 2015, 35(5):217-221.HU Rong-ping, SHI Jun, HUANG Ting-you, et al. Effects of applying hyperacumulator straw in soil on growth and cadmium acumulation of Capsella Bursa-pastoris[J]. Bulletin of Soil and Water Conservation,2015, 35(5):217-221.
    [23]汪佛松.螯合剂对污泥中重金属Mn和Zn活化效果[J].污染防治技术, 2018, 31(5):69-73.WANG Fo-song. Chelating agents on activation effect of heavy metals in sludge Mn and Zn[J]. Pollution Prevention Technique, 2018, 31(5):69-73.
    [24]白薇扬,高焕方,李纲. NTA与EDTA联合施用对茼蒿富集土壤重金属的影响[J].地球与环境, 2018, 46(2):156-162.BAI Wei-yang, GAO Huan-fang, LI Gang. Effects of application of NTA and EDTA on accumulation of soil heavy metals in Chrysanthemum[J]. Earth and Environment, 2018, 46(2):156-162.
    [25] Pe?alosa J M, Carpena R O, Vázquez S, et al. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge[J]. Science of the Total Environment, 2007, 378(1/2):199-204.
    [26] Quartacci M F, lrtelli B, Baker A J M, et al. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata[J]. Chemosphere, 2007, 68(10):1920-1928.
    [27] Lan J, Zhang S, Lin H, et al. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils[J]. Chemosphere,2013, 91(9):1362-1367.
    [28]李君,葛跃,王明新,等. EGTA对Cd胁迫下蓖麻Cd积累和营养元素吸收的影响[J].西北植物学报, 2015, 35(9):1855-1860.LI Jun, GE Yue, WANG Ming-xin, et al. Regulation of EGTA on Cd and nutrient elements accumulation in Ricinus Communis under Cd stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9):1855-1860.
    [29] Hu Y, Nan Z, Su J, et al. Chelant-Assisted uptake and accumulation of Cd by poplar from calcareous arable soils around Baiyin nonferrous metal smelters, northern China[J]. Arid Soil Research&Rehabilitation, 2014, 28(3):340-354.
    [30] Song W, Jianv L. The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L.[J]. Environmental Monitoring and Assessment, 2014, 186(2):751-759.
    [31]张磊.螯合剂强化棉花对镉污染土壤修复的初步研究[J].水土保持学报, 2015, 29(4):321-326.ZHANG Lei. Preliminary study on chelate-enhanced phytoremediation of cadmium-contaminated soil by cotton plants[J]. Journal of Soil and Water Conservation, 2015, 29(4):321-326.
    [32]夏涓文,徐小逊,卢欣,等. EGTA与有机酸联合施用对黄麻修复Cd污染土壤的影响[J].农业环境科学学报, 2019, 38(2):333-341.XIA Juan-wen, XU Xiao-xun, LU Xin, et al. Effect of combined application of EGTA and organic acid on remediation of Cd-contaminated soil by Corchorus capsularis L.[J]. Journal of Agro-Environment Science, 2019, 38(2):333-341.
    [33]张玉秀,黄智博,柴团耀.螯合剂强化重金属污染土壤植物修复的机制和应用研究进展[J].自然科学进展, 2009, 19(11):1149-1158.ZHANG Yu-xiu, HUANG Zhi-bo, CHAI Tuan-yao. Progress in the mechanism and application of chelating agents for enhancing phytoremediation of heavy metal contaminated soils[J]. Progress in Natural Science, 2009, 19(11):1149-1158.
    [34] Moslehi A, Feizian M, Higueras P, et al. Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower(Helianthus annuus L.)[J]. International Journal of Phytoremediation, 2019,21(3):191-199.
    [35]刘金,殷宪强,孙慧敏,等. EDDS与EDTA强化苎麻修复镉铅污染土壤[J].农业环境科学学报, 2015, 34(7):1293-1300.LIU Jin, YIN Xian-qiang, SUN Hui-min, et al. EDTA and EDDS enhanced remediation of Cd and Pb contaminated soil by ramie(Boehmeria Nivea)[J]. Journal of Agro-Environment Science, 2015, 34(7):1293-1300.
    [36] Luo C, Shen Z, Li X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS[J]. Chemosphere, 2005, 59(1):1-11.
    [37]石旻飞,袁江,向芷澄,等.螯合剂与表面活性剂强化东南景天修复Cd污染土壤的研究[J].安徽农业科学, 2015, 43(20):99-102.SHI Min-fei, YUAN Jiang, XIANG Zhi-cheng, et al. Study on surfactant-enhanced remediation of Cd-contaminated soil by Sedum alfredii Hance[J]. Journal of Anhui Agricultural Sciences, 2015, 43(20):99-102.
    [38] Kalyvas G, Tsitselis G, Gasparatos D, et al. Efficacy of EDTA and olive mill wastewater to enhance As, Pb, and Zn phytoextraction by Pteris vittata L. from a soil heavily polluted by mining activities[J].Sustainability, 2018, 10:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700