用户名: 密码: 验证码:
不同生长季节黑果枸杞的根际细菌群落结构(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The rhizosphere bacterial community dynamics of the halophyte Lycium ruthenicum in different growth stages
  • 作者:王飞 ; 杨晓东 ; 李岩
  • 英文作者:Fei Wang;Xiaodong Yang;Yan Li;Key Laboratory of Oasis Ecology,Education Ministry;College of Resource and Environment Sciences,Xinjiang University;Institute of Arid Ecology and Environment,Xinjiang University;Ecology Post-doctoral Research Station,Xinjiang University;
  • 关键词:盐生植物 ; 根际土壤 ; 细菌群落 ; 生长阶段动态
  • 英文关键词:halophyte;;rhizosphere soil;;bacterial community;;growth stage dynamics
  • 中文刊名:微生物学报
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:新疆大学绿洲生态教育部省部共建重点实验室;新疆大学资源与环境科学学院;新疆大学干旱生态环境研究所;新疆大学生态学博士后流动站;
  • 出版日期:2018-07-24 17:07
  • 出版单位:微生物学报
  • 年:2019
  • 期:03
  • 基金:Supported by the Chinese Postdoctoral Science Foundation(2016M592866);; the National Natural Science Foundation of China(U1603241,41661046)~~
  • 语种:英文;
  • 页:129-141
  • 页数:13
  • CN:11-1995/Q
  • ISSN:0001-6209
  • 分类号:S567.19;S154.3
摘要
【目的】黑果枸杞是一种耐盐植物,是我国西北干旱区盐渍土改良的优良植物物种,其根际土壤细菌群落结构在不同生长时期的变化特征尚不清楚。【方法】本研究采用Illumina MiSeq高通量测序研究了黑果枸杞3个生长阶段的根际土壤细菌群落结构的动态变化。【结果】所有样品中共获得317467条序列,对应于7028个细菌/古细菌OTUs。根际土壤细菌群落的α多样性显著高于非根际土壤。衰老期根际细菌的多样性和丰富度明显低于营养生长期和花/果期。变形菌门和酸杆菌门的相对丰度随生长时期的演变而逐渐降低,而蓝细菌门则相反。厚壁菌门的丰度在衰老期明显高于营养生长期和花/果期。优势属的组成也随生长期的演变而改变,营养生长期、花/果期、衰老期的优势属数量分别为17、16、4,且组成也具有差异。相似性分析表明营养生长期和花/果期的根际细菌群落具有很高的相似性,衰老期根际细菌群落组成与生长期和花/果期具有很高差异,然而与非根际土壤的群落结构具有较高的相似性。【结论】根际土壤细菌群落多样性和组成随生长期的改变而表现出明显的动态变异性,表明黑果枸杞生长时期对根际土壤细菌群落结构具有重要的影响。
        [Objective] Lycium ruthenicum is a halophyte and used to improve saline lands in northwest China. However, little is known about the bacterial community structural dynamics with growth stage. [Methods] We investigated the dynamics of rhizosphere bacterial community structure in three growth stages using Illumina MiSeq high-throughput sequencing. [Results] We obtained a total of 317467 16 S rDNA reads, corresponding to 7028 bacterial/archaeal operational taxonomic units. The alpha diversity was higher in the rhizosphere than in bulk soil. The diversity and richness of rhizosphere bacteria were much lower in senescence stage than that in vegetative and flowering/fruiting stages. The relative abundances of Proteobacteria and Acidobacteria gradually decreased, whereas the abundance of Cyanobacteria increased along with growth cycle. The phylum Firmicutes abundance was significantly higher in senescence stage than in other stages. The abundant genera composition also changed with growth stage. Seventeen genera(i.e. Corynebacterium, Acidovorax, Elizabethkingia, Albirhodobacter and Pseudomonas) were abundant at vegetative stage; Sixteen bacterial genera were enriched in flowering/fruiting stage, including Rhodoligotrophos, Geminicoccus, Gracilimonas and Thioprofundum. Four bacterial genera, Exiguobacterium, Citrobacter, Acinetobacter and Pseudomonas, were abundant in senescence stage. In vegetative and flowering/fruiting stages, the rhizosphere bacterial community was of high similarity, and the similarities between rhizosphere communities were higher than that between rhizosphere and bulk soil communities. However, in senescence stage, the rhizosphere bacterial community composition was more different from the communities in previous stages, but turned to be more similar with that of bulk soil. [Conclusion] The rhizosphere bacterial community diversity and composition were changing with growth stage, and great difference was found between senescence stage and previous two stages. Plant growth stage had important effects on structuring the rhizosphere bacterial community of L. ruthenicum.
引文
[1]ILRI.Effectiveness and social/environmental impacts of irrigation projects:a review//Annual Report 1988 of the International Institute for Land Reclamation and Improvement.Wageningen,The Netherlands:ILRI,1988.
    [2]Bartels D,Sunkar R.Drought and salt tolerance in plants.Critical Reviews in Plant Sciences,2005,24(1):23-58.
    [3]Wang WX,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance.Planta,2003,218(1):1-14.
    [4]Chaudhary DR,Gautam RK,Yousuf B,Mishra A,Jha B.Nutrients,microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes.Applied Soil Ecology,2015,91:16-26.
    [5]Hinsinger P,Bengough AG,Vetterlein D,Young IM.Rhizosphere:biophysics,biogeochemistry and ecological relevance.Plant and Soil,2009,321(1/2):117-152.
    [6]Bais HP,Weir TL,Perry LG,Gilroy S,Vivanco JM.The role of root exudates in rhizosphere interactions with plants and other organisms.Annual Review of Plant Biology,2006,57:233-266.
    [7]Zhang HM,Sun Y,Xie XT,Kim MS,Dowd SE,ParéPW.Asoil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms.Plant Journal,2009,58(4):568-577.
    [8]Palaniyandi SA,Damodharan K,Yang SH,Suh JW.Streptomyces sp.strain PGPA39 alleviates salt stress and promotes growth of‘Micro Tom’tomato plants.Journal of Applied Microbiology,2014,117(3):766-773.
    [9]Vaishnav A,Kumari S,Jain S,Varma A,Choudhary DK.Putative bacterial volatile-mediated growth in soybean(Glycine max L.Merrill)and expression of induced proteins under salt stress.Journal of Applied Microbiology,2015,119(2):539-551.
    [10]Lee Y,Krishnamoorthy R,Selvakumar G,Kim K,Sa TM.Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20.Journal of the Korean Society for Applied Biological Chemistry,2015,58(4):533-540.
    [11]Ngumbi E,Kloepper J.Bacterial-mediated drought tolerance:current and future prospects.Applied Soil Ecology,2016,105:109-125.
    [12]Tian YQ,Gao LH.Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions.Microbial Ecology,2014,68(4):794-806.
    [13]Rodríguez-Blanco A,Sicardi M,Frioni L.Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize(Zea mays L.).Biology and Fertility of Soils,2015,51(3):391-402.
    [14]Oliveira V,Gomes NCM,Cleary DFR,Almeida A,Silva AMS,Sim?es MMQ,Silva H,Cunha?.Halophyte plant colonization as a driver of the composition of bacterial communities in salt marshes chronically exposed to oil hydrocarbons.FEMS Microbiology Ecology,2014,90(3):647-662.
    [15]Szymańska S,Plociniczak T,Piotrowska-Seget Z,Z?och M,Ruppel S,Hrynkiewicz K.Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.Microbiological Research,2016,182:68-79.
    [16]Sgroy V,Cassán F,Masciarelli O,del Papa MF,Lagares A,Luna V.Isolation and characterization of endophytic plant growth-promoting(PGPB)or stress homeostasis-regulating(PSHB)bacteria associated to the halophyte Prosopis strombulifera.Applied Microbiology and Biotechnology,2009,85(2):371-381.
    [17]Siddikee MA,Chauhan PS,Anandham R,Han GH,Sa TM.Isolation,characterization,and use for plant growth promotion under salt stress,of acc deaminase-producing halotolerant bacteria derived from coastal soil.Journal of Microbiology and Biotechnology,2010,20(11):1577-1584.
    [18]Ramadoss D,Lakkineni VK,Bose P,Ali S,Annapurna K.Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats.Springerplus,2013,2(1):6.
    [19]Shi SJ,O’Callaghan M,Jones EE,Richardson AE,Walter C,Stewart A,Condron L.Investigation of organic anions in tree root exudates and rhizosphere microbial communities using in situ and destructive sampling techniques.Plant and Soil,2012,359(1/2):149-163.
    [20]Zhou ML,Chen WM,Chen HY,Wei GH.Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2T,a novel salt-resistant species isolated from the desert of northwestern China.Journal of Bacteriology,2012,194(5):1261-1262.
    [21]Tang J,Zheng AP,Bromfield ESP,Zhu J,Li SC,Wang SQ,Deng QM,Li P.16S rRNA gene sequence analysis of halophilic and halotolerant bacteria isolated from a hypersaline pond in Sichuan,China.Annals of Microbiology,2011,61(2):375-381.
    [22]Kim CS,Nam JW,Jo JW,Kim SY,Han JG,Hyun MW,Sung GH,Han SK.Studies on seasonal dynamics of soil-higher fungal communities in Mongolian oak-dominant Gwangneung forest in Korea.Journal of Microbiology,2016,54(1):14-22.
    [23]López-Mondéjar R,Vo?í?kováJ,VětrovskyT,Baldrian P.The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics.Soil Biology and Biochemistry,2015,87:43-50.
    [24]Han LL,Wang JT,Yang SH,Chen WF,Zhang LM,He JZ.Temporal dynamics of fungal communities in soybean rhizosphere.Journal of Soils and Sediments,2017,17(2):491-498.
    [25]Dong LL,Xu J,Zhang LJ,Cheng RY,Wei GF,Su H,Yang J,Qian J,Xu R,Chen SL.Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality.Acta Pharmaceutica Sinica B,2018,8(2):272-282.
    [26]Bencherif K,Boutekrabt A,DalpéY,Sahraoui ALH.Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes.Applied Soil Ecology,2016,107:182-190.
    [27]Houlden A,Timms-Wilson TM,Day MJ,Bailey MJ.Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops.FEMS Microbiology Ecology,2008,65(2):193-201.
    [28]Li XZ,Rui JP,Mao YJ,Yannarell A,Mackie R.Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar.Soil Biology and Biochemistry,2014,68:392-401.
    [29]Peng F,Huang CH,You QG,Gao TP.Effects of plantation of Lycium ruthenicum on the soil salt distribution in the Minqin Basin.Journal of Desert Research,2013,33(5):1406-1412.(in Chinese)彭飞,黄翠华,尤全刚,高天鹏.种植黑果枸杞(Lycium ruthenicum)对盐渍土盐分分布的影响.中国沙漠,2013,33(5):1406-1412.
    [30]Li Y,Yang XD,Qin L,Lv GH,He XM,Zhang XN.The bacterial diversity and community structures in rhizosphere soil of two halophytes,Lycium ruthenicum and Kalidium capsicum.Acta Ecologica Sinica,2018,38(9):3118-3131.(in Chinese)李岩,杨晓东,秦璐,吕光辉,何学敏,张雪妮.两种盐生植物根际土壤细菌多样性和群落结构.生态学报,2018,38(9):3118-3131.
    [31]Zhang XN,Yang XD,Lyu GH.Diversity patterns and response mechanisms of desert plants to the soil environment along soil water and salinity gradients.Acta Ecologica Sinica,2016,36(11):3206-3215.(in Chinese)张雪妮,杨晓东,吕光辉.水盐梯度下荒漠植物多样性格局及其与土壤环境的关系.生态学报,2016,36(11):3206-3215.
    [32]Edwards J,Johnson C,Santos-Medellín C,Lurie E,Podishetty NK,Bhatnagar S,Eisen JA,Sundaresan V.Structure,variation,and assembly of the root-associated microbiomes of rice.Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):E911-E920.
    [33]Schmieder R,Edwards R.Quality control and preprocessing of metagenomic datasets.Bioinformatics,2011,27(6):863-864.
    [34]Zhang JJ,Kobert K,Flouri T,Stamatakis A.PEAR:a fast and accurate illumina paired-end reAd mergeR.Bioinformatics,2014,30(5):614-620.
    [35]Quast C,Pruesse E,Yilmaz P,Gerken J,Schweer T,Yarza P,Peplies J,Gl?ckner FO.The SILVA ribosomal RNA gene database project:improved data processing and web-based tools.Nucleic Acids Research,2013,41(D1):D590-D596.
    [36]Lim JM,Jeon CO,Lee SS,Park DJ,Xu LH,Jiang CL,Kim CJ.Reclassification of Salegentibacter catena Ying et al.2007 as Salinimicrobium catena gen.nov.,comb.nov.and description of Salinimicrobium xinjiangense sp.nov.,a halophilic bacterium isolated from Xinjiang province in China.International Journal of Systematic and Evolutionary Microbiology,2008,58(Pt 2):438-442.
    [37]Chen YG,Cui XL,Zhang YQ,Li WJ,Wang YX,Kim CJ,Lim JM,Xu LH,Jiang CL.Salinimicrobium terrae sp.nov.,isolated from saline soil,and emended description of the genus Salinimicrobium.International Journal of Systematic and Evolutionary Microbiology,2008,58(Pt 11):2501-2504.
    [38]Foesel BU,G??ner AS,Drake HL,Schramm A.Geminicoccus roseus gen.nov.,sp.nov.,an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter.Systematic and Applied Microbiology,2007,30(8):581-586.
    [39]Choi DH,Hwang CY,Cho BC.Pelagibius litoralis gen.nov.,sp.nov.,a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater.International Journal of Systematic and Evolutionary Microbiology,2009,59(Pt 4):818-823.
    [40]Wang YX,Li YP,Liu JH,Xiao W,Lai YH,Li ZY,Ding ZG,Wen ML,Cui XL.Gracilimonas mengyeensis sp.nov.,a moderately halophilic bacterium isolated from a salt mine in Yunnan,south-western China.International Journal of Systematic and Evolutionary Microbiology,2013,63(Pt 11):3989-3993.
    [41]Cho Y,Chung H,Jang GI,Choi DH,Noh JH,Cho BC.Gracilimonas rosea sp.nov.,isolated from tropical seawater,and emended description of the genus Gracilimonas.International Journal of Systematic and Evolutionary Microbiology,2013,63(Pt 11):4006-4011.
    [42]Nedashkovskaya OI,Cleenwerck I,Zhukova NV,Kim SB,de Vos P.Arenicella chitinivorans sp.nov.,a gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius.International Journal of Systematic and Evolutionary Microbiology,2013,63(Pt 11):4124-4129.
    [43]Song J,Joung Y,Park S,Cho JC,Kogure K.Rubrivirga profundi sp.nov.,isolated from deep-sea water,and emended description of the genus Rubrivirga.International Journal of Systematic and Evolutionary Microbiology,2016,66(9):3253-3257.
    [44]See-Too WS,Chua KO,Lim YL,Chen JW,Convey P,Mohidin TBM,Yin WF,Chan KG.Complete genome sequence of Planococcus donghaensis JH1T,a pectin-degrading bacterium.Journal of Biotechnology,2017,252:11-14.
    [45]Ardley JK,Parker MA,de Meyer SE,Trengove RD,O’Hara GW,Reeve WG,Yates RJ,Dilworth MJ,Willems A,Howieson JG.Microvirga lupini sp.nov.,Microvirga lotononidis sp.nov.and Microvirga zambiensis sp.nov.are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts.International Journal of Systematic and Evolutionary Microbiology,2012,62(Pt 11):2579-2588.
    [46]Okubo A,Matsusaka M,Sugiyama S.Impacts of root symbiotic associations on interspecific variation in sugar exudation rates and rhizosphere microbial communities:a comparison among four plant families.Plant and Soil,2016,399(1/2):345-356.
    [47]Li XZ,Rui JP,Xiong JB,Li JB,He ZL,Zhou JZ,Yannarell AC,Mackie RI.Functional potential of soil microbial communities in the maize rhizosphere.PLoS ONE,2014,9(11):e112609.
    [48]Bulgarelli D,Garrido-Oter R,Münch PC,Weiman A,Dr?ge J,Pan Y,McHardy AC,Schulze-Lefert P.Structure and function of the bacterial root microbiota in wild and domesticated barley.Cell Host&Microbe,2015,17(3):392-403.
    [49]Wu ZY,Lin WX,Li JJ,Liu JF,Li BL,Wu LK,Fang CX,Zhang ZX.Effects of seasonal variations on soil microbial community composition of two typical zonal vegetation types in the Wuyi Mountains.Journal of Mountain Science,2016,13(6):1056-1065.
    [50]Taniuchi Y,Watanabe T,Kakehi S,Sakami T,Kuwata A.Seasonal dynamics of the phytoplankton community in Sendai Bay,northern Japan.Journal of Oceanography,2017,73(1):1-9.
    [51]Chiriac CM,Szekeres E,Rudi K,Baricz A,Hegedus A,Dragos N,Coman C.Differences in Temperature and water chemistry shape distinct diversity patterns in thermophilic microbial communities.Applied and Environmental Microbiology,2017,83(21):e01363-17.
    [52]Mateos-Rivera A,Yde JC,Wilson B,Finster KW,Reigstad LJ,?vre?s L.The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen(Norway).FEMS Microbiology Ecology,2016,92(4):fnw038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700