用户名: 密码: 验证码:
峨眉山酸雨的长期变化趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long-term Trend of Acid Rain at Mount Emei
  • 作者:贾小芳 ; 费治伦 ; 倪勇 ; 王缅 ; 冉瑞生 ; 汤洁
  • 英文作者:JIA Xiaofang;FEI Zhilun;NI Yong;WANG Mian;RAN Ruisheng;TANG Jie;Meteorological Observation Center of China meteorologcal administration;Sichuan Meteorological Bureau;
  • 关键词:峨眉山 ; 酸雨 ; 长期趋势 ; 长距离输送
  • 英文关键词:Mount Emei;;acid rain;;long-term trend;;long-distance transportation
  • 中文刊名:三峡生态环境监测
  • 英文刊名:Ecology and Environmental Monitoring of Three Gorges
  • 机构:中国气象局气象探测中心;四川省气象局峨眉山气象站;
  • 出版日期:2019-06-17
  • 出版单位:三峡生态环境监测
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划(2016YFCO200506)
  • 语种:中文;
  • 页:21-30
  • 页数:10
  • CN:50-1214/X
  • ISSN:2096-2347
  • 分类号:X517
摘要
对1992—2015年间峨眉山降水pH和电导率长期观测资料的分析结果表明,该地区降水pH年均值在4.45~5.67范围内变化,多年平均降水pH为4.81,多年平均酸雨频率和强酸雨频率分别为60.8%和23.5%。峨眉山降水酸度的季节变化较明显,夏季酸雨污染较轻,而冬季较重。20余年来,峨眉山地区酸雨污染呈现逐步改善的长期趋势,降水pH的平均年变率约为4%,降水酸度持续减弱,酸雨频率和强酸雨频率持续降低,平均年变率分别为-1.5%和-1.7%。峨眉山地区的降水电导率和非氢电导率呈现缓慢增加的长期趋势,平均年变率分别为0.3μS/cm和0.8μS/cm。受四川盆地区域内主要污染物排放量变化的影响,1992—2005年和2006—2015年,峨眉山降水pH、降水电导率和非氢电导率呈现不同的变化趋势特点,前期降水pH、降水电导率和非氢电导率均呈现增长态势,说明该地区降水中各类可溶性污染物质并未随着降水酸度减弱而减少,反而趋增;后期降水pH维持持续升高趋势的同时,降水电导率和非氢电导率双双呈现下降趋势。对降水时段气团输送轨迹的簇分析结果显示,来自四川盆地内部的气团输送对峨眉山降水影响最大,其贡献在六成以上;陕甘—黄土高原地区、滇西高原—南亚大陆地区的输送也有不同程度的贡献,其中,源自天气上游南亚地区的输送对我国西南地区酸雨污染的潜在影响值得关注。
        The pH value and conductivity data of precipitation observed at Mount Emei during 1992—2015 were analyzed. The results show that the annually averaged pH values vary from 4.45 to 5.67 with a multi-year mean of 4.81. The averages of the annual acid rain frequency and the annual severe acid rain frequency are 60.8%and 23.5%, respectively. The seasonality of the pH values at Mount Emei is obvious, with the acid rain pollution lighter in summer and heavier in winter. The acid rain pollution at Mount Emei has shown a long-term trend of gradual improvement over the past 20 years with an annually averaged pH variability of 4%, and the precipitation acidity decreased continuously. The frequency of acid rain and strong acid rain, decreased continuously and the averaged annual variability are-1.5% and-1.7%, respectively. The precipitation conductivity and non-hydrogen conductivity at the Mount Emei show a long-term slowly increasing trend, and the averaged annual variability is 0.3 μS/cm and 0.8 μS/cm, respectively. Affected by the changes of major pollutants emissions in the Sichuan basin during 1992—2005 and 2006—2015, the pH value, conductivity and non-hydrogen conductivity in precipitation at Mount Emei showed different trends with an increasing during 1992—2005. It indicates that the various soluble pollutants in the precipitation didn't decrease with the decreasing acidity of the precipitation, but increased. The pH value increased continuously with both the decrease of precipitation conductivity and non-hydrogen conductivity during 2006—2015.The cluster analysis of the air mass trajectory during the precipitation period shows that the air mass transportation from the interior of the Sichuan basin has the greatest impact on the precipitation at Mount Emei, with a contribution of more than 60%. The air mass transportation of Shaanxi-Gansu-Loess Plateau and Western Yunnan-South Asia provides different levels of contribution, and the potential impact of the air mass transportation from the south Asia to the southwestern region of China is worth noting.
引文
[1]ZHAO D,SUN B.Air pollution and acid rain in China[J].AMBIO A Journal of the Human Environment,1986,15(1):2-5.
    [2]李洪珍,王木林.我国降水酸度的初步研究[J].气象学报,1984,42(3):332-339.
    [3]丁国安,徐晓斌,王淑凤,等.中国气象局酸雨网基本资料数据集及初步分析[J].应用气象学报,2004(S1):85-94.
    [4]王文兴,许鹏举.中国大气降水化学研究进展[J].化学进展,2009,21(Z1):266-281.
    [5]汤洁,徐晓斌,巴金,等.1992-2006年我国降水酸度的变化趋势[J].科学通报,2010,55(8):705-712.
    [6]HENNING R.Acid deposition in asia;current situation and prospects for the future[J].IOP Conference Series:Earth and Environmental Science,2009,6(46):1-2.
    [7]中国气象局.酸雨观测年报(2017)[M].北京:中国气象局气象探测中心,2018.
    [8]雷孝恩,贾新媛,袁素珍,等.重庆酸雨分布的一个数值模拟[J].大气科学,1985,9(3):276-284.
    [9]冯宗炜,小仓纪雄.重庆酸雨对陆地生态系统的影响和控制对策--中日酸雨合作研究总结[J].环境科学进展,1998,6(5):1-8.
    [10]周晓得,徐志方,刘文景,等.中国西南酸雨区降水化学特征研究进展[J].环境科学,2017,38(10):4438-4446.
    [11]ALEKSIC N,ROY K,SISTLA G,et al.Analysis of cloud and precipitation chemistry at whiteface mountain,NY[J].Atmospheric Environment,2009,43(17):2709-2716.
    [12]ANDERSON J B,BAUMGARDNER R E,SANDRA E G.Trends in cloud water sulfate and nitrate as measured at two mountain sites in the eastern united states[J].Atmospheric Environment,2006,40(23):4423-4437.
    [13]汤洁,薛虎圣,于晓岚,等.瓦里关山降水化学特征的初步分析[J].环境科学学报,2000,20(4):420-425.
    [14]ZHAO Z,TIAN L,FISCHER E,et al.Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley,Eastern Tien Shan,China[J].Atmospheric Environment,2008,42(39):8934-8942.
    [15]YAN W,KA M,JIAN G,et al.The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in north-eastern china[J].Atmospheric Environment,2008,42(13):2959-2970.
    [16]孙根厚,汤洁.1992-2010年泰山地区酸雨变化特征及其趋势分析[J].气象,2013,39(3):347-354.
    [17]刘嘉麒,Keen W C,霍义强,等.背景降水:中美科技合作全球内陆降水背景值研究[M].北京:中国环境科学出版社,1995.
    [18]NIU H W,HE Y Q,LU X X,et al.Chemical composition of rainwater in the Yulong Snow Mountain region,Southwestern China[J].Atmospheric Research,2014(144):195-206.
    [19]曹洪法,高映新,舒俭民.峨眉山冷杉衰亡与酸性降水关系的初步研究[J].环境科学研究,1988,1(3):7-14.
    [20]张铮.峨眉山酸雨的垂直观测[J].大气科学,1991,15(3):31-37.
    [21]燕于佳.峨眉山降水电导率变化规律初探[J].四川环境,1998,17(3):74-77.
    [22]XUE H B,SCHNOOR J L.Acid deposition and lake chemistry in southwest China[J].Water,Air,and Soil Pollution,1994,75(1/2):61-78.
    [23]AAS W,SHAO M,JIN L,et al.Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J].Atmospheric Environment,2007,41(8):1706-1716.
    [24]XUE Q,JIE D,SRI H K,et al.Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve,sichuan,China during 2015-2016:Possible effects from regional emission reduction and local tourist activities[J].Environmental Pollution,2018,233:267-277.
    [25]ZHANG Y H,QIN Y.The chemical characteristics of springtime precipitation in Lushan mountains,east China[J].Journal of Applied Meteorology,1998,37(10):1143-1152.
    [26]LI Y,TANG J,YU X L,et al.Characteristics of precipitation chemistry at Lushan mountain,east China:1992-2009[J].Environmental Science Pollution Research,2012,19(6):2329-43.
    [27]SHI C,DENG X L,YANG Y J,et al.Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan mountain in east China[J].Advances in Atmospheric Sciences,2014,31(5):1157-1166.
    [28]黄海洪,董蕙青,陈竤.大明山保护区的酸雨特征分析及气象影响机理[J].福建林学院学报,2003,23(4):331-334.
    [29]中国气象局.酸雨观测方法(试行2版)[M].北京:中国气象科学研究院,1992.
    [30]中国气象局.酸雨观测业务规范[S].北京:气象出版社,2005.
    [31]汤洁,贾小芳,程红兵.酸雨观测质量考核方法的改进与评估[J].气象,2018,44(12):1618-1627.
    [32]汤洁,徐晓斌,杨志彪,等.电导率加和性质及其在酸雨观测数据质量评估中的应用[J].应用气象学报,2008,19(4):385-392.
    [33]汤洁,巴金.酸雨观测中pH测量负偏差的统计分析[J].应用气象学报,2013,24(1):55-64.
    [34]中国气象局.酸雨和酸雨区等级:QX/T 372-2017[S].北京:气象出版社,2017.
    [35]张占峰,王红磊,德力格尔,等.瓦里关大气降水的化学特征[J].大气科学学报,2014,37(4):502-508.
    [36]四川省统计局.四川统计年鉴-2003[M].北京:中国统计出版社,2004.
    [37]重庆市统计局.重庆统计年鉴1999[M].北京:中国统计出版社,2000.
    [38]中华人民共和国国家统计局.国家统计数据库[DS].http://data.stats.gov.cn/
    [39]郝吉明,李欢欢,沈海滨.中国大气污染防治进程与展望[J].世界环境,2014(1):58-61.
    [40]刘炳江,郝吉明,贺克斌,等.中国酸雨和二氧化硫污染控制区区划及实施政策研究[J].中国环境科学,1998,18(1):1-7.
    [41]Draxler R R.Hybrid single-particle Lagrangian integrated trajectories(HY-SPLIT):version 3.0-user’s guide and model description[M].Washington:Sliver Spring Maryland,1992.
    [42]WANG Y Q,ZHANG X Y,DRAXLER R R.Trajstat:gis-based software that uses various trajectory statistical analysis methods to identify potential sources from longterm air pollution measurement data[J].Environmental Modelling&Software,2009,24(8):938-939.
    [43]王文兴,刘红杰,张婉华,等.我国东部沿海地区酸雨来源研究[J].中国环境科学,1997,17(5):387-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700