用户名: 密码: 验证码:
基于无人机和卫星遥感影像的升金湖草滩植被地上生物量反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:UAV and satellite remote sensing images based aboveground biomass inversion in the meadows of Lake Shengjin
  • 作者:高燕 ; 梁泽毓 ; 王彪 ; 吴艳兰 ; 刘诗雨
  • 英文作者:GAO Yan;LIANG Zeyu;WANG Biao;WU Yanlan;LIU Shiyu;School of Resources and Environmental Engineering,Anhui University;Anhui Data and Application Center of High Resolution Earth Observation System in Anhui;
  • 关键词:湿地 ; 地上生物量反演 ; 无人机遥感 ; 高分一号 ; 植被指数 ; 升金湖
  • 英文关键词:Wetlands;;aboveground biomass inversion;;UAV;;GF-1;;vegetation index;;Lake Shengjin
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:安徽大学资源与环境工程学院;安徽省高分辨率对地观测系统安徽数据与应用中心;
  • 出版日期:2019-03-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:02
  • 基金:安徽省教育厅重点项目(KJ2018A0007);; 安徽省人力厅留学人员创新项目择优资助计划;; 安徽省国土资源厅科技项目(2016KJ030002)联合资助
  • 语种:中文;
  • 页:215-226
  • 页数:12
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X87;Q948
摘要
湿地植被地上生物量是衡量湿地生态系统健康状况的重要指标,对于珍稀水禽越冬繁殖、全球碳循环、生态净化具有重要意义,是生态学与遥感解译的研究热点之一.针对于地上生物量的测算,卫星遥感数据覆盖范围广但其空间分辨率较低,无人机遥感数据空间分辨率高但采集范围小,同时受湿地面积、观测系统及外界环境等条件的影响,使得遥感影像地上生物量反演更加复杂和困难.本研究基于无人机和高分一号数据对升金湖草滩植被地上生物量反演进行研究,结合升金湖保护区4个样区无人机可见光影像与相应样区实测样本数据,建立地上生物量与可见光波段、多种可见光植被指数的线性、幂函数、多项式、对数回归模型,并通过可决系数(R~2)、平均绝对误差(MAE)和均方根误差(RMSE)对模型进行精度评价,选择最优模型对无人机影像进行地上生物量反演;通过可见光波段反演得到的生物量,与高分一号WFV归一化差分植被指数(Normalized Difference Vegetation Index,NDVI)影像相结合进行回归建模,获取整个升金湖草滩植被地上生物量分布.结果表明,利用无人机红光波段建立的多项式方程对地上生物量反演有着最高模拟精度,R~2=0.86、预测精度MAE=111.33 g/m~2、RMSE=145.42 g/m~2,且红光波段生物量反演方法得到的结果与实际生物量分布一致性较高,高分一号WFV NDVI与无人机反演生物量构建的多项式模型为最优模型,R~2为0.91.本研究利用无人机和高分一号数据进行生物量反演研究,整合多源遥感数据优点,以获取更加丰富和准确的信息,进而提高地上生物量反演精度,为湿地监测和湿地恢复管理提供数据和技术支撑,具有重要研究意义和应用价值.
        The aboveground biomass of wetland vegetation,as an essential indicator of the wetland ecosystem health,is of great significance for the overwintering reproduction,global carbon cycle and ecological purification of rare waterfowl. It is one of the research hotspots in ecology and remote sensing interpretation. The advantage of satellite remote sensing data lies in its wide coverage,but its spatial resolution is low. UAV remote sensing data have high spatial resolution but small acquisition range. At the same time,because of the influence of wetland area,observation system and external environment,it is more complicated and difficult to retrieve the aboveground biomass from remote sensing images. This research studies a kind of inversion method of aboveground biomass based on UAV and GF-1 data. Firstly,UAV visible images of four sample areas and the ground measured sample data are used to establish linear,power function,polynomial,and logarithmic regression model of biomass,visible light band,and a variety of visible light vegetation index. The accuracy of this method was evaluated by the coefficient of determination( R~2),mean absolute error( MAE) and root mean square error( RMSE). The optimal model was selected for biomass inversion of UAV images. Then the biomass data inverted from the visible light band and the GF-1 WFV normalized difference vegetation index( NDVI) image are used to establish a regression model to obtain the aboveground biomass distribution map of the vegetation in Lake Shengjin meadows. The results show that the polynomial equation was determined using the red band has higher simulation accuracy for biomass inversion,R~2= 0.86,MAE = 111.33 g/m~2,RMSE = 145.42 g/m~2,and the inversion results obtained by the red band biomass inversion method is highly consistent with the actual biomass distribution. The polynomial model,constructed by GF-1 WFV and biomass inversed by UAV,is the optimal model,and R~2 reached 0.91. This study uses UAV and GF-1 data to conduct biomass inversion research. It integrates the advantages of each data and can obtain richer and more accurate information. It could improve inversion accuracy and provide data and technical support for wetland monitoring and wetland restoration management. Thus this work has important research significance and application value.
引文
[1]Zhao TG,Yu RH,Zhang ZL et al.Estimation of wetland vegetation aboveground biomass based on remote sensing data:Areview.Chinese Journal of Ecology,2016,35(7):1936-1946.DOI:10.13292/j.1000-4890.201607.028.[赵天舸,于瑞宏,张志磊等.湿地植被地上生物量遥感估算方法研究进展.生态学杂志,2016,35(7):1936-1946.]
    [2]Li S,Zhang ZL,Zhou DM.An estimation of aboveground vegetation biomass in a national natural reserve using remote sensing.Geographical Research,2011,30(2):278-290.[李爽,张祖陆,周德民.湿地植被地上生物量遥感估算模型研究---以洪河湿地自然保护区为例.地理研究,2011,30(2):278-290.]
    [3]Wang SG,Li X,Zhou YZ.Progress of method for wetland vegetation biomass.Geography and Geo-Information Science,2004,20(5):104-109.[王树功,黎夏,周永章.湿地植被生物量测算方法研究进展.地理与地理信息科学,2004,20(5):104-109.]
    [4]Fan YB,Gong ZN,Zhao WJ et al.Study on vegetation biomass inversion method based on hyperspectral remote sensing.Journal of Hebei Normal University:Natural Science Edition,2016,40(3):267-271.[范云豹,宫兆宁,赵文吉等.基于高光谱遥感的植被生物量反演方法研究.河北师范大学学报:自然科学版,2016,40(3):267-271.]
    [5]He C,Feng ZK,Han X et al.The inversion processing of vegetation biomass along yongding river based on multispectral information.Spectroscopy and Spectral Analysis,2012,32(12):3353-3357.[何诚,冯仲科,韩旭等.基于多光谱数据的永定河流域植被生物量反演.光谱学与光谱分析,2012,32(12):3353-3357.]
    [6]Ding L.Biomass and carbon storagr estimation of reed in yellow river estuary wetland based on high resolution remote sensing[Dissertation].Hohhot:Inner Mongolia University,2015.[丁蕾.黄河口湿地芦苇生物量与固碳量高分辨率遥感估算研究[学位论文].呼和浩特:内蒙古大学,2015.]
    [7]Han Y,Pei L,Du J.Remote sensing inversion of aboveground biomass over the honghe wetland.Remote Sensing Technology and Application,2014,29(2):224-231.[韩颖,裴亮,杜嘉.洪河湿地植被地上生物量遥感反演研究.遥感技术与应用,2014,29(2):224-231.]
    [8]Wang JB,Zhang J,Ma Y et al.Study on the above ground vegetation biomass estimation model based on GF-1 WFV Satellite Image in the Yellow River Estuary Wetland.Acta Laser Biology Sinica,2014,23(6):604-608.[王建步,张杰,马毅等.基于高分一号WFV卫星影像的黄河口湿地草本植被生物量估算模型研究.激光生物学报,2014,23(6):604-608.]
    [9]Liang JP,Ma DX,Mao DH et al.Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve.Remote Sensing for Land&Resources,2016,28(3):60-66.DOI:10.6046/gtzyyg.2016.03.10.[梁建平,马大喜,毛德华等.双台河口国际重要湿地芦苇地上生物量遥感估算.国土资源遥感,2016,28(3):60-66.]
    [10]Lumbierres M,Méndez P,Bustamante J et al.Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology.Remote Sensing,2017,9(4):392.DOI:10.3390/ns9040392.
    [11]Wang P,Wang RR,Yang GS.Advance in classification and biomass estimation of plants in wetlands based on multisource remote sensing data.Wetland Science,2017,15(1):114-124.[王鹏,万荣荣,杨桂山.基于多源遥感数据的湿地植物分类和生物量反演研究进展.湿地科学,2017,15(1):114-124.]
    [12]Wang Q,Liao JJ.Estimation of wetland vegetation biomass in the Poyang Lake area using Landsat IM and ENVISAT ASARdata.Journal of Geo-Informatdn Science,2010,12(2):282-291.[王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演.地球信息科学学报,2010,12(2):282-291.]
    [13]Zhang B,Zhang L,Xie D et al.Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation.Remote Sensing,2015,8(1):10.DOI:10.3390/rs801001.
    [14]Zhou ZM,Yang YM,Chen BQ.Estimating the Spartina alterniflora fractional vegetation cover using high spatial resolution remote sensing in a coastal wetland.Acta Ecologica Sinica,2017,37(2):505-512.DOI:10.5846/stxb201507271566.[周在明,杨燕明,陈本清.滩涂湿地入侵种互花米草植被覆盖度的高空间分辨率遥感估算.生态学报,2017,37(2):505-512.]
    [15]Xie T,Liu R,Hu QH et al.A critical review on unmanned aerial vehicle remote sensing technology in the field of environmental monitoring.Environmental Science and Technology,2013,26(4):55-60.[谢涛,刘锐,胡秋红等.基于无人机遥感技术的环境监测研究进展.环境科技,2013,26(4):55-60.]
    [16]Zhang ZJ,Li AN,Bian JH et al.Estimating aboveground biomass of grassland in Zoige by Visible Vegetation Index Derived from Unmanned Aerial Vehicle Image.Remote Sensing Technology and Application,2016,31(1):51-62.[张正健,李爱农,边金虎等.基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究.遥感技术与应用,2016,31(1):51-62.]
    [17]He YY,Zhang YB,Li JQ et al.Estimation of stem biomass of individual Abies faxoniana through unmanned aerial vehicle remote sensing.Journal of Bejing Forestry University,2016,38(5):42-49.DOI:10.13332/j.1000-1522.20150383.[何游云,张玉波,李俊清等.利用无人机遥感测定岷江冷杉单木树干生物量.北京林业大学学报,2016,38(5):42-49.]
    [18]Zhang Z,Sun G,Zhang L et al.Biomass retrieval based on UAVSAR polarimetric data.IEEE,2010:604-607.DOl:10.1109/IGARSS.2010.5651641.
    [19]Jing R,Gong ZN,Zhao WJ et al.Estimating biomass of emergent aquatic plants based on UAV SfM data.Acta Ecologica Sinica,2017,37(22):7698-7709.DOl:10.5846/stxb201609221908.[井然,宫兆宁,赵文吉等.基于无人机Sf M数据的挺水植物生物量反演.生态学报,2017,37(22):7698-7709.]
    [20]Zhou Z,Yang Y,Chen B.Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data.Aquatic Botany,2017,144.DOI:10.1016/j.aquabot.2017.10.004.
    [21]Han S,He TR,Ban RH.Analysis of ecosystam service function value of Shengj in Lake Wetland.Soil and Water Conservation in China,2015,(6):24-27.[韩松,何太蓉,班荣舶.升金湖湿地生态系统服务功能价值分析.中国水土保持,2015,(6):24-27.]
    [22]Yang L,Dong B,Wang Q et al.Habitat suitability change of water birds in Shengjinhu National Nature Reserve,Anhui Province.J Lake Sci,2015,27(6):1027-1034.DOI:10.18307/2015.0606.[杨李,董斌,汪庆等.安徽升金湖国家级自然保护区水鸟生境适宜性变化.湖泊科学,2015,27(6):1027-1034.]
    [23]Barter M,Cao L,Chen L et al.Results of a survey for waterbirds in the lower Yangtze floodplain,China,in January-February 2004.Forktail,2005,21:1-7.
    [24]Wang FL.The bird community in shengjinhu lake wetland and its protection study.Journal of Anqing Teachers College:Natural Science Edition,2014,20(2):101-104.[汪芳琳.升金湖湿地保护区鸟类及其保护策略研究.安庆师范学院学报:自然科学版,2014,20(2):101-104.]
    [25]Yuan XJ.An Introduction on Shengjinhu National Nature Reserve.Anhui Forestry Science and Technology,2004,(1):45.[袁西进.升金湖国家级自然保护区简介.安徽林业科技,2004,(1):45.]
    [26]Li X,Sun W,Li L.Study on the recognition of spirulina based on visible light remote sensing of the Small UAV.Geomatics&Spatial Information Technology,2017,40(4):153-156.[李鑫,孙伟,李林.基于小型无人机可见光遥感的蓝藻识别研究.测绘与空间地理信息,2017,40(4):153-156.]
    [27]Wang XQ,Wang MM,Wang SQ et al.Extraction of vegetation information from visible unmanned aerial vehicle images.Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):152-159.[汪小钦,王苗苗,王绍强等.基于可见光波段无人机遥感的植被信息提取.农业工程学报,2015,31(5):152-159.]
    [28]Guo P,Wu FD,Dai JG et al.Comparison of farmland crop classification methods based on visible light images of unmanned aerial vehicles.Transactions of the Chinese Society of Agricultural Engineering,2017,33(13):112-119.[郭鹏,武法东,戴建国等.基于无人机可见光影像的农田作物分类方法比较.农业工程学报,2017,33(13):112-119.]
    [29]Verrelst J,Schaepman ME,Koetz B et al.Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBAdata.Remote Sensing of Environment,2008,112(5):2341-2353.DOI:10.1016/j.rse.2007.11.001.
    [30]Meyer GE.Verification of color vegetation indices for automated crop imaging applications.Elsevier Science Publishers B.V,2008,63(2):282-293.DOI:10.1016/j.compag.2008.03.009.
    [31]Bendig J,Yu K,Aasen H et al.Combining UAV-based plant height from crop surface models,visible,and near infrared vegetation indices for biomass monitoring in barley.International Journal of Applied Earth Observation&Geoinformation,2015,39:379-387.DOI:10.1016/jjag.2015.02.012.
    [32]Hunt ER,Cavigelli M,Cst D et al.Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status.Precision Agriculture,2005,6(4):359-378.DOl:10.1007/s11119-005-2324-5.
    [33]Wang QY.Comparison between Estimated standard error and coefficient of determination of regression.Statistics and Decision,2006,(23):141.[王巧英.回归估计标准误差与可决系数的比较.统计与决策,2006,(23):141.]
    [34]Li BB,Li ZB,Yu T et al.Research on fractal dimension of vegetation cover based on normalized difference vegetation index in watershed scale.Transactions of the Chinese Society of Agricultural Engineering,2014,30(15):239-247.[李斌斌,李占斌,宇涛等.基于归一化植被指数的流域植被覆盖分形维数研究.农业工程学报,2014,30(15):239-247.]
    [35]Fu ST,Zhou Y.Research on normalized difference vegetation index algorithm based on remote sensing image.Jiangxi Surveying and Mapping,2010,(3):31-32,15.[符思涛,周云.基于遥感影像的归一化植被指数算法研究.江西测绘,2010,(3):31-32,15.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700