用户名: 密码: 验证码:
Monolayer organic field-effect transistors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monolayer organic field-effect transistors
  • 作者:Jie ; Liu ; Lang ; Jiang ; Wenping ; Hu ; Yunqi ; Liu ; Daoben ; Zhu
  • 英文作者:Jie Liu;Lang Jiang;Wenping Hu;Yunqi Liu;Daoben Zhu;Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences;Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science;
  • 英文关键词:monolayer films;;organic field-effect transistors;;monolayer molecular crystals(MMCs);;mobility
  • 中文刊名:Science China(Chemistry)
  • 英文刊名:中国科学:化学(英文版)
  • 机构:Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences;Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science;
  • 出版日期:2019-01-30 15:13
  • 出版单位:Science China(Chemistry)
  • 年:2019
  • 期:03
  • 基金:supported by the Ministry of Science and Technology of China (2017YFA0204704, 2016YFB0401100);; the National Natural Science Foundation of China (21805284, 21873108);; the Chinese Academy of Sciences (Hundred Talents Plan and the Strategic Priority Research Program (XDB30000000, XDB12030300)
  • 语种:英文;
  • 页:33-50
  • 页数:18
  • CN:11-5839/O6
  • ISSN:1674-7291
  • 分类号:TN386
摘要
Monolayer organic field-effect transistors(OFETs) are attracting worldwide interest in device physics and novel applications due to their ultrathin active layer for two-dimensional charge transport. The monolayer films are generally prepared by thermal evaporation, the Langmuir technique or self-assembly process, etc., but their electrical performance is relatively lower than corresponding thick films. From 2011, the performance of monolayer OFETs has been boosted by using the monolayer molecular crystals(MMCs) as active channels, which opened up a new era for monolayer OFETs. In this review, recent progress of monolayer OFETs, including the preparation of monolayer films, their OFET performance and applications are summarized.Finally, perspectives of monolayer OFETs in the near future are also discussed.
        Monolayer organic field-effect transistors(OFETs) are attracting worldwide interest in device physics and novel applications due to their ultrathin active layer for two-dimensional charge transport. The monolayer films are generally prepared by thermal evaporation, the Langmuir technique or self-assembly process, etc., but their electrical performance is relatively lower than corresponding thick films. From 2011, the performance of monolayer OFETs has been boosted by using the monolayer molecular crystals(MMCs) as active channels, which opened up a new era for monolayer OFETs. In this review, recent progress of monolayer OFETs, including the preparation of monolayer films, their OFET performance and applications are summarized.Finally, perspectives of monolayer OFETs in the near future are also discussed.
引文
1 Tok JBH,Bao Z.Sci China Chem,2012,55:718-725
    2 Shen H,Di CA,Zhu D.Sci China Chem,2017,60:437-449
    3 Oh JY,Rondeau-GagnéS,Chiu YC,Chortos A,Lissel F,Wang GJN,Schroeder BC,Kurosawa T,Lopez J,Katsumata T,Xu J,Zhu C,Gu X,Bae WG,Kim Y,Jin L,Chung JW,Tok JBH,Bao Z.Nature,2016,539:411-415
    4 Huang F,Cao Y.Sci China Chem,2017,60:431-432
    5 Hu W,Bai F,Gong X,Zhan X,Fu H,Bjornholm T.Organic Optoelectronics.Weinheim:Wiley-VCH Verlag GmbH&Co.KGaA,2013.1-507
    6 Wang C,Dong H,Jiang L,Hu W.Chem Soc Rev,2018,47:422-500
    7 Klauk H.Organic Electronics:Materials,Manufacturing and Applications.Weinheim:Wiley-VCH Verlag GmbH&Co.KGaA,2007.1-428
    8 Gao X,Zhao Z.Sci China Chem,2015,58:947-968
    9 Wang C,Dong H,Hu W,Liu Y,Zhu D.Chem Rev,2012,112:2208-2267
    10 Liu J,Dong H,Wang Z,Ji D,Cheng C,Geng H,Zhang H,Zhen Y,Jiang L,Fu H,Bo Z,Chen W,Shuai Z,Hu W.Chem Commun,2015,51:11777-11779
    11 Liu J,Zhang H,Dong H,Meng L,Jiang L,Jiang L,Wang Y,Yu J,Sun Y,Hu W,Heeger AJ.Nat Commun,2015,6:10032
    12 Minemawari H,Yamada T,Matsui H,Tsutsumi J’,Haas S,Chiba R,Kumai R,Hasegawa T.Nature,2011,475:364-367
    13 Lee BH,Hsu BBY,Patel SN,Labram J,Luo C,Bazan GC,Heeger AJ.Nano Lett,2016,16:314-319
    14 Li Q,Wu J,Wu R,Liu Y,Chen H,Huang F,Li H.Sci China Chem,2017,60:490-496
    15 Zhou K,Chen H,Dong H,Fang Q,Hu W.Sci China Chem,2017,60:510-515
    16 Jiang L,Dong H,Meng Q,Li H,He M,Wei Z,He Y,Hu W.Adv Mater,2011,23:2059-2063
    17 Li H,Li Y,Li H,Brédas JL.Adv Funct Mater,2017,27:1605715
    18 Wang Q,Qian J,Li Y,Zhang Y,He D,Jiang S,Wang Y,Wang X,Pan L,Wang J,Wang X,Hu Z,Nan H,Ni Z,Zheng Y,Shi Y.Adv Funct Mater,2016,26:3191-3198
    19 Wang Q,Jiang S,Qian J,Song L,Zhang L,Zhang Y,Zhang Y,Wang Y,Wang X,Shi Y,Zheng Y,Li Y.Sci Rep,2017,7:7830
    20 Peng B,Huang S,Zhou Z,Chan PKL.Adv Funct Mater,2017,27:1700999
    21 Yamamura A,Watanabe S,Uno M,Mitani M,Mitsui C,Tsurumi J,Isahaya N,Kanaoka Y,Okamoto T,Takeya J.Sci Adv,2018,4:eaao5758
    22 Shi Y,Jiang L,Liu J,Tu Z,Hu Y,Wu Q,Yi Y,Gann E,McNeill CR,Li H,Hu W,Zhu D,Sirringhaus H.Nat Commun,2018,9:2933
    23 He D,Zhang Y,Wu Q,Xu R,Nan H,Liu J,Yao J,Wang Z,Yuan S,Li Y,Shi Y,Wang J,Ni Z,He L,Miao F,Song F,Xu H,Watanabe K,Taniguchi T,Xu JB,Wang X.Nat Commun,2014,5:5162
    24 He D,Qiao J,Zhang L,Wang J,Lan T,Qian J,Li Y,Shi Y,Chai Y,Lan W,Ono LK,Qi Y,Xu JB,Ji W,Wang X.Sci Adv,2017,3:e1701186
    25 Zhang Y,Qiao J,Gao S,Hu F,He D,Wu B,Yang Z,Xu B,Li Y,Shi Y,Ji W,Wang P,Wang X,Xiao M,Xu H,Xu JB,Wang X.Phys Rev Lett,2016,116:016602
    26 Hu Y,Li G,Chen Z.IEEE Electron Device Lett,2018,39:276-279
    27 Paloheimo J,Stubb H,Yli-Lahti P,Dyreklev P,Ingan?s O.Thin Solid Films,1992,210-211:283-286
    28 Wei Z,Xu W,Hu W,Zhu D.Langmuir,2009,25:3349-3351
    29 Wei Z,Cao Y,Ma W,Wang C,Xu W,Guo X,Hu W,Zhu D.Appl Phys Lett,2009,95:033304
    30 Cao Y,Wei Z,Liu S,Gan L,Guo X,Xu W,Steigerwald ML,Liu Z,Zhu D.Angew Chem Int Ed,2010,49:6319-6323
    31 Fabiano S,Musumeci C,Chen Z,Scandurra A,Wang H,Loo YL,Facchetti A,Pignataro B.Adv Mater,2012,24:951-956
    32 Sizov AS,Agina EV,Gholamrezaie F,Bruevich VV,Borshchev OV,Paraschuk DY,de Leeuw DM,Ponomarenko SA.Appl Phys Lett,2013,103:043310
    33 Sizov AS,Anisimov DS,Agina EV,Borshchev OV,Bakirov AV,Shcherbina MA,Grigorian S,Bruevich VV,Chvalun SN,Paraschuk DY,Ponomarenko SA.Langmuir,2014,30:15327-15334
    34 D’Innocenzo V,Luzio A,Abdalla H,Fabiano S,Loi MA,Natali D,Petrozza A,Kemerink M,Caironi M.J Mater Chem C,2016,4:11135-11142
    35 Borshchev OV,Sizov AS,Agina EV,Bessonov AA,Ponomarenko SA.Chem Commun,2017,53:885-888
    36 Agina EV,Mannanov AA,Sizov AS,Vechter O,Borshchev OV,Bakirov AV,Shcherbina MA,Chvalun SN,Konstantinov VG,Bruevich VV,Kozlov OV,Pshenichnikov MS,Paraschuk DY,Ponomarenko SA.ACS Appl Mater Interfaces,2017,9:18078-18086
    37 Trul AA,Sizov AS,Chekusova VP,Borshchev OV,Agina EV,Shcherbina MA,Bakirov AV,Chvalun SN,Ponomarenko SA.JMater Chem C,2018,6:9649-9659
    38 Dinelli F,Murgia M,Levy P,Cavallini M,Biscarini F,de Leeuw DM.Phys Rev Lett,2004,92:116802
    39 Jung S,Yao Z.Appl Phys Lett,2005,86:083505
    40 Ruiz R,Papadimitratos A,Mayer AC,Malliaras GG.Adv Mater,2005,17:1795-1798
    41 Park BN,Seo S,Evans PG.J Phys D-Appl Phys,2007,40:3506-3511
    42 Huang J,Sun J,Katz HE.Adv Mater,2008,20:2567-2572
    43 Asadi K,Wu Y,Gholamrezaie F,Rudolf P,Blom PWM.Adv Mater,2009,21:4109-4114
    44 Liu SW,Lee CC,Tai HL,Wen JM,Lee JH,Chen CT.ACS Appl Mater Interfaces,2010,2:2282-2288
    45 Mannebach EM,Spalenka JW,Johnson PS,Cai Z,Himpsel FJ,Evans PG.Adv Funct Mater,2013,23:554-564
    46 Wang J,Jiang C.Org Electron,2015,16:164-170
    47 Mottaghi M,Lang P,Rodriguez F,Rumyantseva A,Yassar A,Horowitz G,Lenfant S,Tondelier D,Vuillaume D.Adv Funct Mater,2007,17:597-604
    48 Smits ECP,Mathijssen SGJ,van Hal PA,Setayesh S,Geuns TCT,Mutsaers KAHA,Cantatore E,Wondergem HJ,Werzer O,Resel R,Kemerink M,Kirchmeyer S,Muzafarov AM,Ponomarenko SA,de Boer B,Blom PWM,de Leeuw DM.Nature,2008,455:956-959
    49 Hutchins DO,Acton O,Weidner T,Cernetic N,Baio JE,Ting G,Castner DG,Ma H,Jen AKY.Org Electron,2012,13:464-468
    50 Ma H,Acton O,Hutchins DO,Cernetic N,Jen AKY.Phys Chem Chem Phys,2012,14:14110-14126
    51 Ringk A,Li X,Gholamrezaie F,Smits ECP,Neuhold A,Moser A,Van der Marel C,Gelinck GH,Resel R,de Leeuw DM,Strohriegl P.Adv Funct Mater,2013,23:2016-2023
    52 J?ger CM,Schmaltz T,Novak M,Khassanov A,Vorobiev A,Hennemann M,Krause A,Dietrich H,Zahn D,Hirsch A,Halik M,Clark T.J Am Chem Soc,2013,135:4893-4900
    53 Ringk A,Christian Roelofs WS,Smits ECP,van der Marel C,Salzmann I,Neuhold A,Gelinck GH,Resel R,de Leeuw DM,Strohriegl P.Org Electron,2013,14:1297-1304
    54 Schmaltz T,Amin AY,Khassanov A,Meyer-Friedrichsen T,Steinrück HG,Magerl A,Segura JJ,Voitchovsky K,Stellacci F,Halik M.Adv Mater,2013,25:4511-4514
    55 Sandberg HGO,Frey GL,Shkunov MN,Sirringhaus H,Friend RH,Nielsen MM,Kumpf C.Langmuir,2002,18:10176-10182
    56 Shan L,Liu D,Li H,Xu X,Shan B,Xu JB,Miao Q.Adv Mater,2015,27:3418-3423
    57 Defaux M,Gholamrezaie F,Wang J,Kreyes A,Ziener U,Anokhin DV,Ivanov DA,Moser A,Neuhold A,Salzmann I,Resel R,de Leeuw DM,Meskers SCJ,Moeller M,Mourran A.Adv Mater,2012,24:973-978
    58 Chen H,Dong S,Bai M,Cheng N,Wang H,Li M,Du H,Hu S,Yang Y,Yang T,Zhang F,Gu L,Meng S,Hou S,Guo X.Adv Mater,2015,27:2113-2120
    59 Meng Q,Zhang F,Zang Y,Huang D,Zou Y,Liu J,Zhao G,Wang Z,Ji D,Di C,Hu W,Zhu D.J Mater Chem C,2014,2:1264-1269
    60 Arai S,Inoue S,Hamai T,Kumai R,Hasegawa T.Adv Mater,2018,30:1707256
    61 Jeong H,Kim D,Xiang D,Lee T.ACS Nano,2017,11:6511-6548
    62 Zhang X,Li T.Chin Chem Lett,2017,28:2058-2064
    63 Paloheimo J,Kuivalainen P,Stubb H,Vuorimaa E,Yli-Lahti P.Appl Phys Lett,1990,56:1157-1159
    64 Xu G,Bao Z,Groves JT.Langmuir,2000,16:1834-1841
    65 Scott JC,Samuel JDJ,Hou JH,Rettner CT,Miller RD.Nano Lett,2006,6:2916-2919
    66 Fabiano S,Yoshida H,Chen Z,Facchetti A,Loi MA.ACS Appl Mater Interfaces,2013,5:4417-4422
    67 Lo CK,Wang CY,Oosterhout SD,Zheng Z,Yi X,Fuentes-Hernandez C,So F,Coropceanu V,Brédas JL,Toney MF,Kippelen B,Reynolds JR.ACS Appl Mater Interfaces,2018,10:11995-12004
    68 Agina EV,Usov IA,Borshchev OV,Wang J,Mourran A,Shcherbina MA,Bakirov AV,Grigorian S,M?ller M,Chvalun SN,Ponomarenko SA.Langmuir,2012,28:16186-16195
    69 Shao W,Dong H,Jiang L,Hu W.Chem Sci,2011,2:590-600
    70 Liu D,Xu X,Su Y,He Z,Xu J,Miao Q.Angew Chem Int Ed,2013,52:6222-6227
    71 Liu D,He Z,Su Y,Diao Y,Mannsfeld SCB,Bao Z,Xu J,Miao Q.Adv Mater,2014,26:7190-7196
    72 Jung MC,Leyden MR,Nikiforov GO,Lee MV,Lee HK,Shin TJ,Takimiya K,Qi Y.ACS Appl Mater Interfaces,2015,7:1833-1840
    73 Wang Q,Jiang S,Qiu L,Qian J,Ono LK,Leyden MR,Wang X,Shi Y,Zheng Y,Qi Y,Li Y.ACS Appl Mater Interfaces,2018,10:22513-22519
    74 Heringdorf FJ,Reuter MC,Tromp RM.Nature,2001,412:517-520
    75 Fritz SE,Martin SM,Frisbie CD,Ward MD,Toney MF.J Am Chem Soc,2004,126:4084-4085
    76 Gao J,Xu JB,Zhu M,Ke N,Ma D.J Phys D-Appl Phys,2007,40:5666-5669
    77 Mirza M,Wang J,Li D,Arabi SA,Jiang C.ACS Appl Mater Interfaces,2014,6:5679-5684
    78 Mirza M,Wang J,Wang L,He J,Jiang C.Org Electron,2015,24:96-100
    79 Park B.Thin Solid Films,2017,627:53-58
    80 Whitesides GM,Grzybowski B.Science,2002,295:2418-2421
    81 Mas-Torrent M,Rovira C.Chem Rev,2011,111:4833-4856
    82 DiBenedetto SA,Facchetti A,Ratner MA,Marks TJ.Adv Mater,2009,21:1407-1433
    83 Calhoun MF,Sanchez J,Olaya D,Gershenson ME,Podzorov V.Nat Mater,2007,7:84-89
    84 Tulevski GS,Miao Q,Fukuto M,Abram R,Ocko B,Pindak R,Steigerwald ML,Kagan CR,Nuckolls C.J Am Chem Soc,2004,126:15048-15050
    85 Guo X,Myers M,Xiao S,Lefenfeld M,Steiner R,Tulevski GS,Tang J,Baumert J,Leibfarth F,Yardley JT,Steigerwald ML,Kim P,Nuckolls C.Proc Natl Acad Sci USA,2006,103:11452-11456
    86 Mathijssen SGJ,Smits ECP,van Hal PA,Wondergem HJ,Ponomarenko SA,Moser A,Resel R,Bobbert PA,Kemerink M,Janssen RAJ,de Leeuw DM.Nat Nanotech,2009,4:674-680
    87 Novak M,Ebel A,Meyer-Friedrichsen T,Jedaa A,Vieweg BF,Yang G,Voitchovsky K,Stellacci F,Spiecker E,Hirsch A,Halik M.Nano Lett,2011,11:156-159
    88 Rumpel A,Novak M,Walter J,Braunschweig B,Halik M,Peukert W.Langmuir,2011,27:15016-15023
    89 Zhang F,Di C,Berdunov N,Hu Y,Hu Y,Gao X,Meng Q,Sirringhaus H,Zhu D.Adv Mater,2013,25:1401-1407
    90 Li L,Gao P,Schuermann KC,Ostendorp S,Wang W,Du C,Lei Y,Fuchs H,De Cola L,Müllen K,Chi L.J Am Chem Soc,2010,132:8807-8809
    91 Wu K,Li H,Li L,Zhang S,Chen X,Xu Z,Zhang X,Hu W,Chi L,Gao X,Meng Y.Langmuir,2016,32:6246-6254
    92 Li L,Gao P,Wang W,Müllen K,Fuchs H,Chi L.Angew Chem Int Ed,2013,52:12530-12535
    93 Wang Z,Niu X,Zhou X,Song R,Wang Z,Huang L,Chi L.Org Electron,2018,58:38-45
    94 Shin J,Hong TR,Lee TW,Kim A,Kim YH,Cho MJ,Choi DH.Adv Mater,2014,26:6031-6035
    95 Giri G,DeLongchamp DM,Reinspach J,Fischer DA,Richter LJ,Xu J,Benight S,Ayzner A,He M,Fang L,Xue G,Toney MF,Bao Z.Chem Mater,2015,27:2350-2359
    96 Huang S,Peng B,Chan PKL.Adv Electron Mater,2017,3:1700268
    97 Xu C,He P,Liu J,Cui A,Dong H,Zhen Y,Chen W,Hu W.Angew Chem Int Ed,2016,55:9519-9523
    98 Liu X,Luo X,Nan H,Guo H,Wang P,Zhang L,Zhou M,Yang Z,Shi Y,Hu W,Ni Z,Qiu T,Yu Z,Xu JB,Wang X.Adv Mater,2016,28:5200-5205
    99 Xu R,He D,Zhang Y,Wu B,Liu F,Meng L,Liu JF,Wu Q,Shi Y,Wang J,Nie JC,Wang X,He L.Phys Rev B,2014,90:224106
    100 Wu B,Zhao Y,Nan H,Yang Z,Zhang Y,Zhao H,He D,Jiang Z,Liu X,Li Y,Shi Y,Ni Z,Wang J,Xu JB,Wang X.Nano Lett,2016,16:3754-3759
    101 Zhang Y,Luo Z,Hu F,Nan H,Wang X,Ni Z,Xu J,Shi Y,Wang X.Nano Res,2017,10:1336-1344
    102 Wan W,Sun J,Su J,Hovm?ller S,Zou X.J Appl Crystlogr,2013,46:1863-1873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700