用户名: 密码: 验证码:
近35年青藏高原植被带变化对气候变化及人类活动的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of vegetation zones, in the Qinghai-Tibetan Plateau, to climate change and anthropogenic influences over the last 35 years
  • 作者:魏彦强 ; 芦海燕 ; 王金牛 ; 孙建 ; 王旭峰
  • 英文作者:WEI Yanqiang;LU Haiyan;WANG Jinniu;SUN Jian;WANG Xufeng;Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;School of Economics, Lanzhou University;School of Accountancy, Lanzhou University of Finance and Economics;Chengdu Institute of Biology, Chinese Academy of Sciences;Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;
  • 关键词:植被带 ; NDVI ; 气候变化 ; 人类活动 ; 青藏高原
  • 英文关键词:vegetation zone;;NDVI;;climate change;;anthropogenic influence;;Qinghai-Tibetan Plateau
  • 中文刊名:草业科学
  • 英文刊名:Pratacultural Science
  • 机构:中国科学院西北生态环境资源研究院甘肃省遥感重点实验室;兰州大学经济学院;兰州财经大学会计学院;中国科学院成都生物研究所;中国科学院地理科学与资源研究所;
  • 出版日期:2019-04-15
  • 出版单位:草业科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(41701505);国家自然科学基金重大项目(41690143);; 青海省科技项目(2017-SF-A6)
  • 语种:中文;
  • 页:14+250-263
  • 页数:15
  • CN:62-1069/S
  • ISSN:1001-0629
  • 分类号:S812
摘要
植被类型及其生长状况被认为是指示气候及其变化的重要因子,历来受生态学及气候研究重视,而以植被带随气候暖化向高海拔、高纬度地区的迁移为视角的研究则相对较少。本研究以指示植被带生长状况的归一化植被指数(AVHRR/GIMMS-NDVI)为分析手段,选取在气候变化中较为敏感的青藏高原为研究区,分析了1981–2015年35年间其植被带生长状况的时空差异,并与其对应的87个气象站点及同化数据的气温、降水气象资料以及经济统计数据等进行对比,以此来分析植被带对气候变化及人类活动影响的响应。结果显示:1)整个青藏高原在最近35年植被带生长状况总体上好转,这与气温及降水的增长趋势基本一致,但以高原为整体的研究在原因解释上较为困难。由于高原内部区域间差异很大,以不同的分区来研究植被带变化对气候及人为影响的响应无论在空间变化差异还是在原因解释方面均取得了较好的效果。2)在高原中部及其西南部的高海拔地区,植被带出现了普遍的增长,暖湿化的气候趋势是其主要原因。即气候暖化使得高海拔地区严寒的植被生长环境改善,林线上升,植被带扩展,NDVI增加。3)在高原东北部、东部边缘区及其东南部海拔相对较低、气候环境相对较好的地区其植被带普遍出现了退化趋势,与缓慢的气候变化相比较,人口增加等人为干扰因素的增强是其主要原因。即气候变化使得一些地区适宜于人类游牧和定居,人口迁入,城市化发展,当对植被带的影响超过了其承受能力时则出现逆转现象,植被带退化,NDVI减少。
        The types and growth statuses of vegetation are considered critical indicators that reflect climate regimes and have received much attention in ecology and climatology. However, studies focusing on climate warming influencing vegetation replacement toward high altitudes and latitudes, from the perspective of the redistribution of vegetation zones, are scarce.This study used AVHRR/GIMMS-NDVI as the indicator to represent the growth status of vegetation zones and chose the Qinghai-Tibetan Plateau(QTP) as the study area, because of its high sensitivity to climate change. The spatiotemporal dynamics of vegetation in the last 35 years, during 1981–2015, were analyzed. Additionally, the responses of vegetation to climate change and human activities were examined by analyzing the relationship between vegetation and climate/anthropogenic influences, using the temperature and precipitation data from 87 metrological stations, assimilated meteorological data, and economic statistical data on the QTP. The results show that ⅰ) on the whole, the growth status has been improving during the past 35 years. This trend was consistent with that of the temperature and precipitation data.However, it is difficult to explain the reasons behind the changes, when taking the QTP as a whole. By dividing the QTP into different sub-regions, from different zoning schemes, the spatiotemporal characteristics are clearly depicted and causes are reasonably explained. ⅱ) The vegetation in the middle and southwestern QTP, with high altitudes, was improving and the warm-humid climate trend was the main reason for this. That is, the frigid climatic conditions at high altitudes have been alleviated with global warming. With the treeline/timberline being lifted and vegetation zones expanding, the NDVI correspondingly increased. ⅲ) The degenerated regions are mainly in the northern and eastern QTP, which have high population/livestock densities. The slowly changing climate regime and anthropogenic influences, e.g., the rapid growth of livestock and population(urbanization), are the main reasons for the vegetation degradation.
引文
[1]IPCC.Summary for Policymakers.Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007:18.
    [2]IPCC.Climate Change 2014:Synthesis Report.Contribution of Working GroupsⅠ,ⅡandⅢto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014:151.
    [3]OERLEMANS J.Quantifying global warming from the retreat of glaciers.Science,1994,264:243-245.
    [4]OERLEMANS J.Freezes,floes and the future.Nature,2009,462:572-573.
    [5]CHEN B,CHAO W C,LIU X.Enhanced climatic warming in the Tibetan Plateau due to doubling CO2:A model study.Climate Dynamics,2003,20(4):401-413.
    [6]LIU X D,CHENG Z G,YAN L B,YIN Z Y.Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings.Global and Planetary Change,2009,68(3):164-174.
    [7]BERTHIER E,TOUTIN T.SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska.Remote Sensing of Environment,2008,112(5):2443-2454.
    [8]HUGHES L.Climate change and Australia:Key vulnerable regions.Regional Environment Change,2010,11:S189-S195.
    [9]STOW D A,HOPE A,MCGUIRE D,VERBYLA D,GAMON J,HUEMMRICH F,HOUSTON S,RACINE C,STURM M,TAPEK,HINZMAN L,YOSHIKAWA K,TWEEDIE C,NOYLE B,SILAPASWAN C,DOUGLAS D,GRIFFITH B,JIA G,EPSTEINH,WALKER D,DAESCHNER S,PETERSEN A,ZHOU L,MYNENI R.Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems.Remote Sensing of Environment,2004,89(3):281-308.
    [10]STOW D,DAESCHNER S,HOPE A,DOUGLAS D,PETERSEN A,MYNENI R,ZHOU L,OECHEL W.Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s.International Journal of Remote Sensing,2003,24(5):1111-1117.
    [11]FANG J Y,SONG Y C,LIU H Y,PIAO S L.Vegetation-climate relationship and its application in the division of vegetation zone in China.Acta Botanica Sinica,2002,44(9):1105-1122.
    [12]郭茹,温仲明,王红霞,戚德辉.延河流域植物叶性状间关系及其在不同植被带的表达.应用生态学报,2015,26(12):3627-3633.GUO R,WEN Z M,WANG H X,QI D H.Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin,Northwest China.Chinese Journal of Applied Ecology,2015,26(12):3627-3633.
    [13]CHIU C A,LIN P H,HSU C K,SHEN Z H.A novel thermal index improves prediction of vegetation zones:Associating temperature sum with thermal seasonality.Ecological Indicators,2012,23:668-674.
    [14]宋贤冲,郭丽梅,田红灯,邓小军,赵连生,曹继钊.猫儿山不同海拔植被带土壤微生物群落功能多样性.生态学报,2017,37(16):5428-5435.SONG X C,GUO L M,TIAN H D,DENG X J,ZHAO L S,CAO J Z.Variation of soil microbial community diversity along an elevational gradient in the Mao'er Mountain forest.Acta Ecologica Sinica,2017,37(16):5428-5435.
    [15]MORADI H,ATTAR F,OLDELAND J.Plant functional type approach for a functional interpretation of altitudinal vegetation zones in the Alborz Mts.,Iran.Journal of Mountain Science,2017,14(11):2257-2269.
    [16]COLWELL R K,BREHM G,CARDELúS C L,GILMAN A C,LONGINO J T.Global warming,elevational range shifts,and lowland biotic attrition in the Wet Tropics.Science,2008,322:258-261.
    [17]JUMP A S,MáTYáS C,PE?UELAS J.The altitude-for-latitude disparity in the range retractions of woody species.Trends in Ecology and Evolution,2009,24(12):694-701.
    [18]TOBIAS B.Climate change and glacier retreat in northern Tien Shan(Kazakhstan/Kyrgyzstan)using remote sensing data.Global and Planetary Change,2007,56(1/2):1-12.
    [19]LI Z X,HE Y Q,YANG X M,THEAKSTONE W H,JIA W X,PU T,LIU Q,HE X Z,SONG B,ZHANG N N,WANG S J,DU JK.Changes of the Hailuogou glacier,Mt.Gongga,China,against the background of climate change during the Holocene.Quaternary International,2010,218(1/2):166-175.
    [20]PAROLO G,ROSSI G.Upward migration of vascular plants following a climate warming trend in the Alps.Basic and Applied Ecology,2008,9(2):100-107.
    [21]LEE T D,BARRETT J P,HARTMAN B.Elevation,substrate,and the potential for climate-induced tree migration in the White Mountains,New Hampshire,USA.Forest Ecology and Management,2005,212(1/3):75-91.
    [22]BAKER B,MOSELEY R.Advancing treeline and retreating glaciers:Implications for conservation in Yunnan,P.R.China.Arctic,Antarctic,and Alpine Research,2007,39(2):200-209.
    [23]SOINI E.Land use change patterns and livelihood dynamics on the slopes of Mt.Kilimanjaro,Tanzania.Agricultural Systems,2005,85(3):306-323.
    [24]BENISTON M,DIAZ H F,BRADLEY R S.Climate change at high elevation sites:An overview.Climatic Change,1997,36(3):233-251.
    [25]VUILLE M,BRADLEY R S,WERNER M,KEIMIG F.20th century climate change in the tropical Andes:Observations and model results.Climatic Change,2003,59(1):75-99.
    [26]KERR R A.Global warming is changing the world.Science,2007,316:188-190.
    [27]CUI X F,GRAF H F,LANGMANN B,CHEN W,HUANG R H.Climate impacts of anthropogenic land use changes on the Tibetan Plateau.Global and Planetary Change,2006,54(1/2):33-56.
    [28]DU M Y,KAWASHIMA S,YONEMURA S,ZHANG X Z,CHEN S B.Mutual influence between human activities and climate change in the Tibetan Plateau during recent years.Global and Planetary Change,2004,41(3/4):241-249.
    [29]GOETZ S J,BUNN A G,FISKE G J,HOUGHTON R A.Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance.Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13521-13525.
    [30]SCHWALB A,SCHüTT B,FANG X.Climate evolution and environmental response on the Tibetan Plateau.Quaternary International,2010,218(1/2):1-2.
    [31]RATTAN L,MANNAVA V K S,FAIZ S M A,MUSTAFIZUR R A H M,KHANDAKAR R I.Climate Change and Food Security in South Asia.Dordrecht,Netherlands:Springer,2011:13-30.
    [32]YOU Q L,KANG S C,PEPIN N,FLüGEL W A,SANCHEZ LORENZO A,YAN Y P,ZHANG Y J.Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset.Global and Planetary Change,2010,72(1/2):11-24.
    [33]YANG T,HAO X B,SHAO Q X XU C Y,ZHAO C Y,CHEN X,WANG W G.Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century.Global and Planetary Change,2011,80-81:1-13.
    [34]ZHAO L,PING C L,YANG D Q,CHENG G D,DING Y J,LIU S Y.Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang(Tibetan)Plateau,China.Global and Planetary Change,2004,43(1/2):19-31.
    [35]JIN H J,YU Q H,WANG S L,LüL Z.Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming.Cold Regions Science and Technology,2008,53(3):317-333.
    [36]XUE X,GUO J,HAN B S,SUN Q W,LIU L C.The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau.Geomorphology,2009,108(3/4):182-190.
    [37]YAO T D,PU J C,LU A X,WANG Y Q,YU W S.Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau,China,and surrounding regions.Arctic,Antarctic,and Alpine Research,2007,39(4):642-650.
    [38]LIN X W,ZHANG Z H,WANG S P,HU Y G,XU G P,LUO C Y,CHANG X F,DUAN J C,LIN Q Y,XU B,WANG Y F,ZHAO X Q,XIE Z B.Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau.Agricultural and Forest Meteorology,2011,151(7):792-802.
    [39]LEEMANS R,EICKHOUT B.Another reason for concern:Regional and global impacts on ecosystems for different levels of climate change.Global Environmental Change Part A,2004,14(3):219-228.
    [40]FANG Y P,QIN D H,DING Y J,YANG J P,XU K Y.The impacts of permafrost change on NPP and implications:A case of the source regions of Yangtze and Yellow Rivers.Journal of Mountain Science,2011,8(3):437-447.
    [41]BYG A,SALICK J.Local perspectives on a global phenomenon:Climate change in Eastern Tibetan villages.Global Environmental Change,2009,19(2):156-166.
    [42]KANG S C,XU Y W,YOU Q L.Review of climate and cryospheric change in the Tibetan Plateau.Environmental Research Letters,2010,5(1):015101.
    [43]HARRIS R B.Rangeland degradation on the Qinghai-Tibetan plateau:A review of the evidence of its magnitude and causes.Journal of Arid Environments,2010,74(1):1-12.
    [44]WANG X H,ZHENG D,SHEN Y C.Land use change and its driving forces on the Tibetan Plateau during 1990-2000.CATENA,2008,72(1):56-66.
    [45]YANG M X,NELSON F E,SHIKLOMANOV N I,GUO D L,WAN G N.Permafrost degradation and its environmental effects on the Tibetan Plateau:A review of recent research.Earth-Science Reviews,2010,103(1/2):31-44.
    [46]FAN J,WANG H Y,CHEN D.Discussion on sustainable urbanization in Tibet.Chinese Geographical Science,2010,20(3):258-268.
    [47]ZHANG Y L,LI B Y,ZHENG D.A discussion on the boundary and area of the Tibetan Plateau in China.Geographical Research,2002,21(1):1-8.
    [48]BRANDO P M,GOETZ S J,BACCINI A,NEPSTAD D C,BECK P S A,CHRISTMAN M C.Seasonal and interannual variability of climate and vegetation indices across the Amazon.Proceedings of the National Academy of Sciences,2010,107(33):14685-14690.
    [49]FENSHOLT R,PROUD S R.Evaluation of Earth Observation based global long term vegetation trends:Comparing GIMMS and MODIS global NDVI time series.Remote Sensing of Environment,2012,119:131-147.
    [50]WANG X F,XIAO J F,LI X,CHENG G D,MA M G,CHE T,DAI L Y,WANG S Y,WU J K.No Consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau.Journal of Geophysical Research:Biogeosciences,2017,122(12):3288-3305.
    [51]ZHENG D.The systematic study on the natural regions of the Qinghai-Tibet Plateau.Science in China Series D-Earth Sciences,1996,26:336-341.
    [52]STOW D,PETERSEN A,HOPE A,ENGSTROM R,COULTER L.Greenness trends of Arctic tundra vegetation in the 1990s:Comparison of two NDVI data sets from NOAA AVHRR systems.International Journal of Remote Sensing,2007,28(21):4807-4822.
    [53]FERNANDES R,LEBLANC S G.Parametric(modified least squares)and non-parametric(Theil-Sen)linear regressions for predicting biophysical parameters in the presence of measurement errors.Remote Sensing of Environment,2005,95(3):303-316.
    [54]AHMED S M.Assessment of irrigation system sustainability using the Theil-Sen estimator of slope of time series.Sustainability Science,2014,9(3):293-302.
    [55]K?RNER C.Mountain Ecosystems:Studies in Treeline Ecology.Eos Transactions American Geophysical Union,2005,86(42):401.
    [56]WALTHER G R.Plants in a warmer world.Perspectives in Plant Ecology,Evolution and Systematics,2003,6(3):169-185.
    [57]ALLEN R G,PEREIRA L S,RAES D,SMITH M.Crop evapotranspiration:Guidelines for computing crop water requirementsFAO Irrigation and drainage paper 56.FAO:1998.
    [58]WANG W,WANG W J,LI J S,WU H,XU C,LIU T.The Impact of sustained drought on vegetation ecosystem in southwest China based on remote sensing.Procedia Environmental Sciences,2010,2:1679-1691.
    [59]YANG J,GONG D,WANG W,HU M,MAO R.Extreme drought event of 2009/2010 over southwestern China.Meteorology and Atmospheric Physics,2012,115(3):173-184.
    [60]HALLEGATTE S,PRZYLUSKI V,VOGT-SCHILB A.Building world narratives for climate change impact,adaptation and vulnerability analyses.Nature Climate Change,2011,1(3):151-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700