用户名: 密码: 验证码:
高压直流接地极对埋地管道的电流干扰及人身安全距离
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current interference of HVDC ground electrode to buried pipelines and its personal safety distance
  • 作者:曹国飞 ; 顾清林 ; 姜永涛 ; 李永发 ; 毛建 ; 修林冉 ; 王修云 ; 姜子涛
  • 英文作者:Cao Guofei;Gu Qinglin;Jiang Yongtao;Li Yongfa;Mao Jian;Xiu Linran;Wang Xiuyun;Jiang Zitao;West-East Gas Pipeline Branch,PetroChina Pipeline Company;Safetech Research Institute;
  • 关键词:高压直流接地极 ; 人身安全距离 ; 埋地管道 ; 数值模拟 ; 电磁干扰 ; 管线长度 ; 土壤电阻率 ; 涂层面电阻率
  • 英文关键词:HVDC ground electrode;;Personal safety distance;;Buried pipeline;;Numerical simulation;;Electromagnetic interference;;Pipeline length;;Soil resistivity;;Coating surface resistivity
  • 中文刊名:天然气工业
  • 英文刊名:Natural Gas Industry
  • 机构:中石油管道有限责任公司西气东输分公司;安科工程技术研究院(北京)有限公司;
  • 出版日期:2019-03-27 09:41
  • 出版单位:天然气工业
  • 年:2019
  • 期:03
  • 基金:中国石油天然气股份有限公司科学研究与技术开发项目“安全环保关键技术研究与推广——高压直流电区域管道风险防控技术研究与应用”(编号:2016D-4602)
  • 语种:中文;
  • 页:131-138
  • 页数:8
  • CN:51-1179/TE
  • ISSN:1000-0976
  • 分类号:TE88
摘要
高压直流输电系统的直流接地极在运行初期或发生故障和检修时,会产生瞬间大电流,给附近埋地油气管道设施及操作人员带来极大的安全隐患。为了保障埋地管道附近人员的安全,对高压直流接地极对埋地管道的电流干扰及人身安全距离(以下简称安全距离)进行了研究。首先利用数值模拟技术建立了埋地管道受电磁干扰的模型,进而利用该模型计算了不同土壤电阻率、管线长度、管道防腐层、接地极入地电流、管道尺寸等情况下,高压直流接地极对埋地管道杂散电流干扰的安全距离,并分析了上述条件对高压直流接地极干扰程度的影响规律。研究结果表明:①管线长度对高压直流接地极干扰程度的影响较大,管线越长,安全距离越大,但当管线长度达到或超过600 km时,安全距离则基本不变;②管线涂层对高压直流接地极干扰程度的影响较大,随着涂层面电阻率的增加,安全距离逐渐增大;③对于多层土壤结构,可将最大的单层电阻率作为整体电阻率,其计算得到的安全距离最大,评价结果也更为保守。结论认为,利用计算结果得到的4类长度管线的安全距离图谱,可供高压直流接地极及管线设计时参考,并且可以作为拟建高压直流接地极或埋地管线安全距离选取的依据。
        When DC ground electrode of a high-voltage direct current(HVDC) transmission system is in the stage of early operation or in the case of failures and maintenance, an instantaneous large current will be generated and bring great potential safety hazards to the nearby buried oil/gas pipelines and facilities and operators. In order to ensure the safety of the persons near the buried pipelines, we investigated the current interference of HVDC ground electrode to buried pipelines and its personal safety distance(hereinafter referred to as a safety distance). Firstly, the model simulating the electromagnetic interference to buried pipelines was established by means of the numerical simulation technology. Then, the model was used to calculate the safety distance corresponding to eddy current interference of HVDC ground electrode to buried pipelines under different soil resistivities, pipeline lengths, pipeline anti-corrosion insulations,earth currents of ground electrode and pipeline sizes. Finally, the influence laws of above mentioned factors on the interference degree of HVDC ground electrode were analyzed. And the following research results were obtained. First, the influence of pipeline length on the interference degree of HVDC ground electrode is great. The longer the pipeline, the greater the safety distance. When the pipeline is equal to or longer than 600 km, however, the safety distance is basically the same. Second, the effect of pipeline coating on the interference degree of HVDC ground electrode is great. As the coating surface resistivity increases, the safety distance increases gradually. Third, for multi-layer soil structures, the maximum single-layer resistivity can be taken as the overall resistivity. And correspondingly, the calculated safety distance is the longest, and the evaluation result is more conservative. In conclusion, the safety distance diagrams of the pipelines with 4 lengths which are obtained based on the calculation results can be used as reference in the design of HVDC ground electrode and pipelines, as well as the basis for selecting the safety distance of HVDC ground electrode or buried pipelines to be constructed.
引文
[1]李刚.山东多馈入交直流混联系统电磁暂态特性分析[D].济南:山东大学,2015.Li Gang.Analysis on commutation failures in Shandong Multi-Infeed HVDC system[D].Jinan:Shandong University,2015.
    [2]刘文勋.直流单极运行情况下的地表电位计算分析[D].上海:上海交通大学,2007.Liu Wenxun.Analysis of ground surface potential distribution under single-pole operation mode of HVDC transmission lines[D].Shanghai:Shanghai Jiao Tong University.2007.
    [3]丁钊,韩伟强.天广直流输电系统双极运行情况总结[J].电网技术,2003,27(9):49-54.Ding Zhao&Han Weiqiang.Summary of bipolar operation situation of Tian-Guang DC power transmission system[J].Power System Technology,2003,27(9):49-54.
    [4]王洪亮.高压直流输电单极大地回线方式运行时接地极电流的研究[D].成都:西南交通大学,2007.Wang Hongliang.Research on ground electrode current of high voltage direct current system in ground return status[D].Chengdu:Southwest Jiaotong University,2007.
    [5]谭波,潘卓洪,文习山.HVDC单极大地运行时直流电流在交流系统中分布的计算[C]//2007中国电机工程学会高电压专委会学术年会.深圳,2007.Tan Bo,Pan Zhuohong&Wen Xishan.Calculation of DC current distribution in AC systems on ground electrode for HVDC[C]//2007 Academic Annual Conference of High Voltage Special Committee of China Institute of Electrical Engineering,2007-11-30,Shenzhen,China.
    [6]王雁冰.川气东送管道杂散电流排流工程技术研究[D].西安:西安石油大学,2010.Wang Yanbing.The research of Sichuan-East China gas transmission pipeline stray current drainage engineering[D].Xi'an:Xi'an Shiyou University,2010.
    [7]程明,张平.鱼龙岭接地极入地电流对西气东输二线埋地钢质管道的影响分析[J].天然气与石油,2010,28(5):22-26.Cheng Ming&Zhang Ping.Effect of Yulongling grounding current on buried steel pipeline of West-East Gas Pipeline 2[J].Oil and Gas,2010,28(5):22-26.
    [8]Gautier DL,Dolton GL&Attanasi ED.1995 national oil and gas assessment and onshore federal lands[R].Reston:US Dept.of the Interior,US Geological Survey,1998.
    [9]Skiba RJ,Chung CG&Trachok M.Parsing disciplinary disproportionality:Contributions of infraction,student,and school characteristics to out-of-school suspension and expulsion[J].American Educational Research Journal,2014,51(4):640-670.
    [10]Paul FO&Schre FW.The effect of HVDC ground current on oil field corrosion[J].IEEE Transactions on Industry and General Applications,1968,IGA-4(3):260-266.
    [11]O'Brien MT,Zavahir M,Clark M,Boyle D&Milosevic P.New Zealand bipolar HVDC earth/sea return operation——environmental experiences[C]//International Council on Large Electric Systems,Pairs,France,2006.
    [12]Verhiel AJ.The effects of high-voltage DC power transmission systems on buried metallic pipelines[J].IEEE Transactions on Industry&General Applications,1971,IGA-7(3):403-415.
    [13]陈小凡,唐潮,杜志敏,汤连东,魏嘉宝,马旭.基于有限体积方法的页岩气多段压裂水平井数值模拟[J].天然气工业,2018,38(12):77-86.Chen Xiaofan,Tang Chao,Du Zhimin,Tang Liandong,Wei Jiabao&Ma Xu.Numerical simulation on multi-stage fractured horizontal wells in shale gas reservoirs based on finite volume method[J].Natural Gas Industry,2018,38(12):77-86.
    [14]陈玉凤,吴能友,梁德青,胡榕华.基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J].天然气工业,2018,38(11):128-134.Chen Yufeng,Wu Nengyou,Liang Deqing&Hu Ronghua.Numerical simulation on the resistivity of hydrate-bearing sediment based on fractal pore model[J].Natural Gas Industry,2018,38(11):128-134.
    [15]高攸纲,石丹.电磁兼容总论[M].2版.北京:北京邮电大学出版社,2011.Gao Yougang&Shi Dan.General discussion of electromagnetic compatibility[M].Beijing:Beijing University of Posts and Telecommunications Press,2011.
    [16]青攀.高压直流接地极电流对高铁牵引网的影响研究[D].北京:华北电力大学,2016.Qing Pan.Research on influence of HVDV ground electrode current on high-speed railway traction net[D].Beijing:North China Electric Power University,2016.
    [17]张志勇.西气东输站场进出站区域应力分析研究[J].广东化工,2014,41(15):56-57.Zhang Zhiyong.The stress analysis on the entrance area of the West-East Gas Pipeline Project station[J].Guangdong Chemical Industry,2014,41(15):56-57.
    [18]朱王晶.阴极极化对590高强钢及其焊接件氢脆敏感性影响的研究[D].青岛:青岛科技大学,2014.Zhu Wangjing.Studies on effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 590 high-strength steel and welded pieces[D].Qingdao:Qingdao University of Science&Technology,2014.
    [19]秦润之,杜艳霞,路民旭.高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J].金属学报,2018,54(6):886-894.Qin Runzhi,Du Yanxia&Lu Minxu.Study of interference parameters variation regularity and corrosion behavior of X80 steel in Guangdong soil under high voltage direct current interference[J].Acta Metallurgica Sinica,2018.54(16):886-894.
    [20]全国电气安全标准化委员会.GB/T 3805-2008特低电压(ELV)限值[S].北京:中国标准出版社,2008.National Committee for Standardization of Electrical Safety.GB/T 3805-2008 Extra-low voltage(ELV)-Limit values[S].Beijing:Standards Press of China,2008.
    [21]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 9711-2017石油天然气工业管线输送系统用钢管[S].北京:中国标准出版社,2017.State Administration for Market Regulation&Standardization Administration of the PRC.GB/T 9711-2017 Petroleum and natural gas industries-Steel pipe for pipeline transportation systems[S].Beijing:Standards Press of China,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700