用户名: 密码: 验证码:
CMIP5模式对西北干旱区典型流域气温模拟能力评估——以开都-孔雀河为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of air temperature of the typical river basin in desert area of Northwest China by the CMIP5 models:A case of the Kaidu-Kongqi River Basin
  • 作者:李晓菲 ; 徐长春 ; 李路 ; 罗映雪 ; 杨秋萍 ; 杨媛媛
  • 英文作者:LI Xiaofei;XU Changchun;LI Lu;LUO Yingxue;YANG Qiuping;YANG Yuanyuan;College of Resource and Environmental Science, Xinjiang University;Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University;
  • 关键词:气温 ; 泰勒图 ; 多模式集合平均 ; Mann-Kendall ; 突变检验 ; 开都-孔雀河流域
  • 英文关键词:air temperature;;Taylor diagram;;multi-model ensemble mean;;Mann-Kendall;;abrupt change;;Kaidu-Kongqi River Basin
  • 中文刊名:资源科学
  • 英文刊名:Resources Science
  • 机构:新疆大学资源与环境科学学院;新疆大学绿洲生态教育部重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:资源科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41561023);; 2017新疆研究生科研创新项目(XJGRI2017009)
  • 语种:中文;
  • 页:131-143
  • 页数:13
  • CN:11-3868/N
  • ISSN:1007-7588
  • 分类号:P423
摘要
西北干旱区水资源问题突出,全球变暖将进一步加剧其水资源短缺,研究未来气候变化对流域水资源合理分配和使用具有重要意义。本文利用CRU(Climate Research Unit)数据和DCHP(Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections)提供的32个经BCSD降尺度的CMIP5(全球耦合模式比较计划第五阶段)模式气温数据,采用线性倾向估计、滑动平均、M-K(Mann-Kendall)检验及滑动T(MMT)等检验法,以西北干旱区典型流域开都-孔雀河流域为例,通过对1950—2005年的年平均气温、年平均最高气温与年平均最低气温3个指标的变化趋势及突变年份进行检测,评估各模式及模式集合平均对气温变化的模拟能力。研究结果表明:①12个模式能够准确模拟出1950—2005年流域内各气温指标的显著增加趋势,8个模式能够模拟出部分气温指标的增温趋势,但均低估了增温速率,集合平均也存在同样问题;②除FIO-ESM与MPI-ESM-MR能够准确模拟出气温突变时间外,绝大多数模式不能够准确模拟出。基于优选模式的集合平均PM-PLS和PM-EE对突变的模拟能力总体上优于单个模式,其中PM-PLS模拟能力更优;③对PM-PLS模式集合平均进一步评价,发现其能较好地再现流域气温线性趋势的时空变化总体特征,但仍存在增温速率低估的问题。采用气候模式进行未来气候预估仍需加强模式优选及多模式集合平均方法的深入研究。
        Global warming will result in serve water shortage, aggravating the existing outstanding water problem in the Kaidu-Kongqi River Basin. Studies on the future climate change will contribute to the rational distribution and utilization of water in the basin. Based on the CRU(Climate Research Unit) dataset and 32 BCSD-downscaled CMIP5 model air temperature dataset from DCHP(Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections), the paper assessed the simulation ability of both 32 models and multi-model ensemble mean through the test of long-term trend and abrupt change of annual average, maximum and minimum air temperature in the Kaidu-Kongqi River Basin over the period of 1950-2005 by using the methods of linear trend calculation, moving average, Mann-Kendall(M-K) test and moving T-test(MMT). Results show that(1) 12 of 32 models are capable of reproducing the significant warming trend of three temperature indicators during 1950-2005, 8 of 32 models can only simulate that of some temperature indicators, but all of them underestimate the warming rate, so does the multi-model ensemble mean.(2) Most models failed to simulate the time of abrupt change accurately except two, FIO-ESM and MPI-ESM-MR. The ensemble mean of preferred models, PM-PLS and PM-EE,are superior to the individual model in simulating abrupt change. Between them, PM-PLS is better.(3) The further evaluation indicates that the multi-model ensemble PM-PLS can better capture the linear trend of spatio-temporal characteristics, but the problem of underestimating the warming rate still exists. It appeals to strengthen the study of model optimum selection and multiple models assemble in the future climate prediction using climate models.
引文
[1]IPCC.Climate Change 2007:The Physical Science Basis[M].Cambridge:Cambridge University Press,2007.
    [2]吴迪,严登华.SRES情景下多模式集合对淮河流域未来气候变化的预估[J].湖泊科学,2013,25(4):565-575.[Wu D,Yan DH.Projections of future climate change over Huaihe River basin by multimodel ensembles under SRES scenarios[J].Journal of Lake Sciences,2013,25(4):565-575.]
    [3]刘兆飞,王蕊,姚治君.蒙古高原气温与降水变化特征及CMIP5气候模式评估[J].资源科学,2016,38(5):956-969.[Liu Z F,Wang R,Yao Z J.Air temperature and precipitation over the Mongolian Plateau and assessment of CMIP5 climate models[J].Resources Science,2016,38(5):956-969.]
    [4]Wang X Y,Yang T,Li X L,et al.Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble[J].Stochastic Environmental Research&Risk Assessment,2017,31(5):1077-1089.
    [5]Zhu B L,Xue L Q,Wei G H,et al.CMIP5 projected changes in temperature and precipitation in arid and humid basins[J].Theoretical&Applied Climatology,2018,136(3-4):1133-1144.
    [6]王铭昊,李焕连,孙小婷.中国6个CMIP5模式对全球降水年际-年代际变率模拟的定量评估[J].气象,2018,44(5):634-644.[Wang M H,Li H L,Sun X T.Quantitative evaluation on the interannual and interdecadal precipitation variability simulated by six CMIP5 models of China[J].Meteorological Monthly,2018,44(5):634-644.]
    [7]张飞跃,姜彤,苏布达,等.CMIP5多模式集合对南亚大河气候变化模拟评估及未来情景预估[J].热带气象学报,2016,32(5):734-742.[Zhang F Y,Jiang T,Su B D,et al.Simulation and projection of climate change in the south Asian river basin by CMIP5multi-model ensembles[J].Journal of Tropical Meteorology,2016,32(5):734-742.]
    [8]Wang B,Lee J Y,Kang I S,et al.Advance and prospectus of seasonal prediction:assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction(1980-2004)[J].Climate Dynamics,2009,33(1):93-117.
    [9]Almazroui M,Islam M N,Saeed S,et al.Assessment of uncertainties in projected temperature and precipitation over the Arabian peninsula using three categories of cmip5 multimodel ensembles[J].Earth Systems&Environment,2017,DOI:10.1007/s41748-017-0027-5.
    [10]陶纯苇,姜超,孙建新.CMIP5多模式集合对东北三省未来气候变化的预估研究[J].地球物理学报,2016,59(10):3580-3591.[Tao C W,Jiang C,Sun J X.Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble[J].Chinese Journal of Geophysics,2016,59(10):3580-3591.]
    [11]Krishnamurti T N,Mishra A K,Chakraborty A,et al.Improving global model precipitation forecasts over India using downscaling and the FSU superensemble.Part I:1-5-day forecasts[J].Monthly Weather Review,2009,137(9):2713-2735.
    [12]陈鹏翔,江志红,彭冬梅.基于BP-CCA统计降尺度的中亚春季降水的多模式集合模拟与预估[J].气象学报,2017,75(2):236-247.[Chen P X,Jiang Z H,Peng D M.Multi-model statistical downscaling of spring precipitation simulation and projection in central Asia based on canonical correlation analysis[J].Acta Meteorologica Sinica,2017,75(2):236-247.]
    [13]周莉,兰明才,蔡荣辉,等.21世纪前期长江中下游流域极端降水预估及不确定性分析[J].气象学报,2018,76(1):47-61.[Zhou L,Lan M C,Cai R H,et al.Projection and uncertainties of extreme precipitation over the Yangtze River valley in the early21st century[J].Acta Meteorologica Sinica,2018,76(1):47-61.]
    [14]刘长征,杜良敏,柯宗建,等.国家气候中心多模式解释应用集成预测[J].应用气象学报,2013,24(6):677-685.[Liu C Z,Du LM,Ke Z J,et al.Multi-model downscaling ensemble prediction in national climate center[J].Journal of Applied Meteorological Science,2013,24(6):677-685.]
    [15]杨肖丽,郑巍斐,林长清,等.基于统计降尺度和SPI的黄河流域干旱预测[J].河海大学学报(自然科学版),2017,45(5):377-383.[Yang X L,Zheng W F,Lin C Q,et al.Prediction of drought in the Yellow River based on statistical downscale study and SPI[J].Journal of Hohai University(Natural Sciences),2017,45(5):377-383.]
    [16]Dai A.Drought under global warming:A review[J].Climatic Change,2011,2:45-65.
    [17]许崇海,沈新勇,徐影.IPCC AR4模式对东亚地区气候模拟能力的分析[J].气候变化研究进展,2007,3(5):287-292.[Xu C H,Shen X Y,Xu Y.An analysis of climate change in East Asia by using the IPCC AR4 simulations[J].Advances in Climate Change Research,2007,3(5):287-292.]
    [18]冯双磊,靳双龙,刘晓琳,等.CMIP5全球气候模式对1981-2005年东北地表温度的模拟分析[J].气象科技,2018,46(6):1154-1164.[Feng S L,Jin S L,Liu X L,et al.Land surface temperature simulations of CMIP5 models over Northeast China during 1981-2005[J].Meteorological Science and Technology,2018,46(6):1154-1164.]
    [19]吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1102-1111.[Wu J,Gao X J.A gridded daily observation dataset over China region and comparison with the other datasets[J].Chinese Journal of Geophysics,2013,56(4):1102-1111.]
    [20]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.[Wei F Y.Modern Climate Statistic Diagnosis and Forecasting Technique[M].Beijing:China Meteorological Press,2007.]
    [21]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004.[Huang J Y.Methods of Meteorological Statistical Analysis and Prediction[M].Beijing:China Meteorological Press,2004.]
    [22]张学珍,李侠祥,徐新创,等.基于模式优选的21世纪中国气候变化情景集合预估[J].地理学报,2017,72(9):1555-1568.[Zhang X Z,Li X X,Xu X C,et al.Ensemble projection of climate change scenarios of China in the 21st century based on the preferred climate models[J].Acta Geographica Sinica,2017,72(9):1555-1568.]
    [23]智协飞,赵欢,朱寿鹏,等.基于CMIP5多模式回报资料的地面气温超级集合研究[J].大气科学学报,2016,39(1):64-71.[Zhi X F,Zhao H,Zhu S P,et al.Superensemble hindcast of surface air temperature using CMIP5 multimodel data[J].Transactions of Atmospheric Sciences,2016,39(1):64-71.]
    [24]Taylor K E.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research Atmospheres,2001,106(7):183-192.
    [25]张艳武,张莉,徐影.CMIP5模式对中国地区气温模拟能力评估与预估[J].气候变化研究进展,2016,12(1):10-19.[Zhang Y W,Zhang L,Xu Y.Simulations and projections of the surface air temperature in China by CMIP5 models[J].Advances in Climate Change Research,2016,12(1):10-19.]
    [26]苏琪骅,周任君,柯宗建,等.中国大陆地区温度集合预报的7最优权重模型设计及其区域应用[J].中国科学技术大学学报,2017,48(3):199-209.[Su Q H,Zhou R J,Ke Z J,et al.Optimal weighted model for ensemble forecast of the surface air temperature in mainland China and its regional applications[J].Journal of University of Science and Technology of China,2017,48(3):199-209.]
    [27]胡芩,姜大膀,范广洲.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学,2014,38(5):924-938.[Hu Q,Jiang D B,Fan G Z.Evaluation of CMIP5 models over the QinhaiTibetan Plateau[J].Chinese Journal of Atmospheric Sciences,2014,38(5):924-938.]
    [28]蒋帅,江志红,李伟,等.CMIP5模式对中国极端气温及其变化趋势的模拟评估[J].气候变化研究进展,2017,13(1):11-24.[Jiang S,Jiang Z H,Li W,et al.Evaluation of the extreme temperature and its trend in china simulated by CMIP5 models[J].Advances in Climate Change Research,13(1):11-24.]
    [29]张武龙,张井勇,范广州.CMIP5模式对我国西南地区干湿季降水的模拟和预估[J].大气科学,39(3):559-570.[Zhang W L,Zhang J Y,Fan G Z.Evaluation and projection of dry and wet-season precipitation in southwestern China using CMIP5 models[J].Chinese Journal of Atmospheric Sciences,39(3):559-570.]
    [30]赵天保,陈亮,马柱国.CMIP5多模式对全球典型干旱半干旱区气候变化的模拟与预估[J].科学通报,2014,59(12):1148-1163.[Zhao T B,Chen L,Ma Z G.Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models[J].Chinese Science Bulletin,2014,59(12):1148-1163.]
    [31]梁珑腾,马龙,刘廷玺,等.1951-2014年中国北方地区气温突变与变暖停滞的时空变异性[J].中国环境科学,2018,38(5):1601-1615.[Liang L T,Ma L,Liu T X,et al.Spatiotemporal variation of the temperature mutation and warming hiatus over northern China during 1951-2014[J].China Environmental Science,2018,38(5):1601-1615.]
    [32]伍清,蒋兴文,谢洁.CMIP5模式对西南地区气温的模拟能力评估[J].高原气象,2017,36(2):358-370.[Wu Q,Jiang X W,Xie J.Evaluation of surface air temperature in Southwestern China simulated by the CMIP5 models[J].Plateau Meteorology,2017,36(2):358-370.]
    [33]吴晶,罗毅,李佳,等.CMIP5模式对中国西北干旱区模拟能力评价[J].干旱区地理,2014,37(3):499-508.[Wu J,Luo Y,Li J,et al.Evaluation of CMIP5 model’s simulation ability in the northwest arid areas of China[J].Arid Land Geography,2014,37(3):499-508.]
    [34]付建新,曹广超,李玲琴,等.1960-2014年祁连山中东段及其附近地区气温时空变化特征[J].干旱区研究,2018,35(3):549-561.[Fu J X,Cao G C,Li L Q,et al.Spatiotemporal variation of air temperature in the middle and eastern parts of the Qilian Mountains and nearby regions during the Period of 1960-2014[J].Arid Zone Research,2018,35(3):549-561.]
    [35]周丹,张勃,李小亚,等.1961-2010年中国大陆地面气候要素变化特征分析[J].长江流域资源与环境,2014,23(4):549-558.[Zhou D,Zhang B,Li X Y,et al.Analysis of variations of climatic elements in surface ground of Mainland China during 1961-2010[J].Resources and Environment in the Yangtze Basin,2014,23(4):549-558.]
    [36]商沙沙,廉丽姝,马婷,等.近54a中国西北地区气温和降水的时空变化特征[J].干旱区研究,2018,35(1):68-76.[Shang S S,Lian L S,Ma T,et al.Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J].Arid Zone Research,2018,35(1):68-76.]
    [37]陶纯苇,姜超,孙建新.CMIP5模式对中国东北气候模拟能力的评估[J].气候与环境研究,2016,21(3):357-366.[Tao C W,Jiang C,Sun J X.Evaluation of CMIP5 models performance on climate simulation in Northeast China[J].Climatic and Environmental Research,2016,21(3):357-366.]
    [38]姜燕敏,吴昊旻.20个CMIP5模式对中亚地区年平均气温模拟能力评估[J].气候变化研究进展,2013,9(2):110-116.[Jiang YM,Wu H M.Simulation capabilities of 20 CMIP5 models for annual mean air temperatures in central Asia[J].Advances in Climate Change Research,2013,9(2):110-116.]
    [39]丁之勇.北疆地区近53年极端气温事件及其影响因素分析[J].地球环境学报,2018,9(2):159-171.[Ding Z Y.Spatiotemporal variation characteristics of extreme temperature and its influencing factors in recent 53 years in Northern Xinjiang,China[J].Journal of Earth Environment,2018,9(2):159-171.]
    [40]丁之勇,董义阳,鲁瑞洁.1960-2015年中国天山南、北坡与山区极端气温时空变化特征[J].地理科学,2018,38(8):1379-1390.[Ding Z Y,Dong Y Y,Lu R J.Spatio-temporal variability of temperature extremes in Tianshan Mountains area,Northwest China,During 1960-2015[J].Scientia Geographica Sinica,2018,38(8):1379-1390.]
    [41]吴婕,高学杰,徐影.RegCM4模式对雄安及周边区域气候变化的集合预估[J].大气科学,2018,42(3):696-705.[Wu J,Gao XJ,Xu Y.Climate change projection over Xiong’an district and its adjacent areas:An ensemble of RegCM4 simulations[J].Chinese Journal of Atmospheric Sciences,2018,42(3):696-705.]
    [42]张冬峰,韩振宇,石英.CSIRO-Mk3.6.0模式及其驱动下RegCM4.4模式对中国气候变化的预估[J].气候变化研究进展,2017,13(6):557-568.[Zhang D F,Han Z Y,Shi Y.Comparison of climate projection between the driving CSIRO-MK3.6.0 and the downscaling simulation of RegCM4.4 over China[J].Advances in Climate Change Research,2017,13(6):557-568.]
    [43]吕哲敏,李志,李京京,等.区域气候模式(PRECIS)对黄土高原降水模拟能力的评估[J].生态学报,2016,36(20):6618-6627.[Lv Z M,Li Z,Li J J,et al.Verifying the applicability of PRECIS-simulated precipitation on the Loess Plateau[J].Acta Ecologica Sinica,2016,36(20):6618-6627.]
    [44]Wu J,Gao X J,Xu Y L,et al.Regional climate change and uncertainty analysis based on four regional climate model simulations over China[J].Atmospheric and Oceanic Science Letters,2015,8(3):147-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700