用户名: 密码: 验证码:
呼和浩特市大青山白桦根际土壤细菌群落结构研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bacterial community in the rhizosphere soil of Betula platyphylla in the Daqing Mountains, Hohhot
  • 作者:高秀宏 ; 李敏 ; 卢萍 ; 吕桂芬 ; 牛艳芳
  • 英文作者:GAO Xiuhong;LI Min;LU Ping;LV Guifen;NIU Yanfang;College of Life Science and Technology, Inner Mongolia Normal University;
  • 关键词:白桦 ; 根际细菌 ; 高通量测序 ; 群落结构
  • 英文关键词:Betula platyphylla;;rhizosphere bacteria;;high-throughput sequencing;;community structure
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:内蒙古师范大学生命科学与技术学院;
  • 出版日期:2019-05-23
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(31760169);; 内蒙古自治区自然科学基金面上项目(2017MS0310);; 内蒙古自治区高等学校科学研究项目(NJZY16043)
  • 语种:中文;
  • 页:190-200
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.3
摘要
采用高通量测序技术对天然次生林生态系统演替过程中先锋树种白桦的根际土壤细菌多样性及群落结构进行了分析。研究结果表明:白桦根际土壤细菌隶属于28门、90纲、126目、213科、286属,在3个采样地中排名前8的优势细菌门的相对丰度均大于1%,分别为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、绿弯菌门(Chloroflexi)、硝化螺旋菌门(Nitrospirae)、疣微菌门(Verrucomicrobia)和拟杆菌门(Bacteroidetes)。各样地中前3个门的相对丰度之和均在60%以上。对白桦根际土壤细菌的α多样性指数、门水平的聚类热图以及PCoA聚类结果的分析表明,3个采样地中,小井沟(B2)和哈达门森林公园(C2)白桦根际土壤细菌的物种组成更为接近,与井儿梁(A2)的物种组成有一定差异;且小井沟和哈达门森林公园的物种多样性及丰度(ACE指数)显著高于井儿梁,表明细菌对不同环境的适应能力有明显差异。对细菌群落结构与土壤理化性质的RDA分析及相关性分析表明,环境因子对白桦根际土壤细菌的影响顺序为:全氮TN>酸碱度pH>含水量WC>速效钾AK>硝态氮NN>铵态氮AN>有机质OM>有效磷EP,其中,TN、pH和WC是白桦根际土壤优势细菌的主要影响因子。研究结果为深入认识森林生态系统中根际土壤细菌的群落结构和影响因子提供了理论依据。
        The bacterial diversity and community structure in rhizosphere soil of Betula platyphylla, a pioneer species in the succession of a natural secondary forest ecosystem, were studied using high-throughput sequencing technology. The results showed that bacteria from 28 phyla, 90 classes, 126 orders, 213 families, and 286 genera were detected in the rhizosphere soil samples. The relative abundances of the top 8 dominant bacterial phyla in all three sampling sites were greater than 1%; they were Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Verrucomicrobia, and Bacteroidetes. The sum of the relative abundances of the first three phyla in each sampling site was above 60%. The analyses of the alpha diversity index, cluster heatmap at phylum level, and the PCoA of bacterial communities in rhizosphere soil of B. platyphylla showed that, among the three sampling sites, the species compositions of soil bacteria were similar in Xiaojinggou(B2) and Hadamen Forest Park(C2), which were different from Jingerliang(A2). The species diversity and abundance(ACE index) of Xiaojinggou and Hadamen Forest Park were significantly higher than those of Jingerliang, indicating there were significant differences in the ability of the bacteria to adapt to different environments. The RDA and correlation analysis of bacterial community structure with soil physical and chemical properties showed that the degree of influence of soil environmental factors was in the order of TN > pH > WC > AK > NN > AN > OM > EP. Of these, TN, pH, and WC were the main influencing factors for dominant bacteria in rhizosphere soil of B. platyphylla. The results of this study provide a theoretical basis for further understanding of the community structure and influencing factors of rhizosphere soil bacteria in forest ecosystems.
引文
[1] Tedersoo L,Bahram M,P?lme S,K?ljalg U,Yorou N S,Wijesundera R,Ruiz L V,Vasco-Palacios A M,Thu P Q,Suija A,Smith M E,Sharp C,Saluveer E,Saitta A,Rosas M,Riit T,Ratkowsky D,Pritsch K,P?ldmaa K,Piepenbring M,Phosri C,Peterson M,Parts K,P?rtel K,Otsing E,Nouhra E,Njouonkou A L,Nilsson R H,Morgado L N,Mayor J,May T W,Majuakim L,Lodge D J,Lee S S,Larsson K H,Kohout P,Hosaka K,Hiiesalu I,Henkel T W,Harend H,Guo L D,Greslebin A,Grelet G,Geml J,Gates G,Dunstan W,Dunk C,Drenkhan R,Dearnaley J,de Kesel A,Dang T,Chen X,Buegger F,Brearley F Q,Bonito G,Anslan S,Abell S,Abarenkov K.Global diversity and geography of soil fungi.Science,2014,346(6213):1256688.
    [2] Orgiazzi A,Dunbar M B,Panagos P,de Groot G A,Lemanceau P.Soil biodiversity and DNA barcodes:opportunities and challenges.Soil Biology and Biochemistry,2015,80:244- 250.
    [3] Li H,Li R H,Rossi F,Li D H,de Philippis R,Hu C X,Liu Y D.Differentiation of microbial activity and functional diversity between various biocrust elements in a heterogeneous crustal community.CATENA,2016,147:138- 145.
    [4] Garcia K,Doidy J,Zimmermann S D,Wipf D,Courty P E.Take a trip through the plant and fungal transportome of mycorrhiza.Trends in Plant Science,2016,21(11):937- 950.
    [5] Yu C,Hu X M,Deng W,Li Y,Xiong C,Ye C H,Han G M,Li X.Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization.Applied Soil Ecology,2015,86:30- 40.
    [6] Donn S,Kirkegaard J A,Perera G,Richardson A E,Watt M.Evolution of bacterial communities in the wheat crop rhizosphere.Environmental Microbiology,2015,17(3):610- 621.
    [7] Arenz B E,Bradeen J M,Otto-Hanson L K,Kinkel L L.Two grass species fail to display differing species-specific effects on soil bacterial community structures after one season of greenhouse growth.Plant and Soil,2014,385(1/2):241- 254.
    [8] Bell C,Carrillo Y,Boot C M,Rocca J D,Pendall E,Wallenstein MD.Rhizosphere stoichiometry:are C:N:P ratios of plants,soils,and enzymes conserved at the plant species-level?New Phytologist,2014,201(2):505- 517.
    [9] Bell C W,Asao S,Calderon F,Wolk B,Wallenstein M D.Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth.Soil Biology and Biochemistry,2015,85:170- 182.
    [10] Zeng Q C,Dong Y H,An S S.Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau,China.PLoS One,2016,11(4):e0152894.
    [11] Berg G,Grube M,Schloter M,Smalla K.Unraveling the plant microbiome:looking back and future perspectives.Frontiers in Microbiology,2014,5:148.
    [12] Lagomarsino A,Moscatelli M C,Tizio A D,Mancinelli R,Grego S,Marinari S.Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment.Ecological Indicators,2009,9(3):518- 527.
    [13] Li H,Ye D D,Wang X G,Settles M L,Wang J,Hao Z Q,Zhou L S,Dong P,Jiang Y,Ma Z S.Soil bacterial communities ofdifferent natural forest types in Northeast China.Plant and Soil,2014,383(1/2):203- 216.
    [14] Lladó S,López-Mondéjar R,Baldrian P.Forestsoilbacteria:diversity,involvement in ecosystem processes,and response to global change.Microbiology and Molecular Biology Reviews,2017,81(2):e00063- 16.
    [15] Berlemont R,Martiny A C.Genomic potential for polysaccharidedeconstruction in bacteria.Applied and Environmental Microbiology,2015,81(4):1513- 1519.
    [16] López-Mondéjar R,Zühlke D,Becher D,Riedel K,Baldrian P.Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems.Scientific Reports,2016,6:25279.
    [17] Brown M E,Chang M C.Exploring bacterial lignin degradation.Current Opinion in Chemical Biology,2014,19:1- 7.
    [18] Tian J H,Pourcher A M,Bouchez T,Gelhaye E,Peu P.Occurrence of lignin degradation genotypes and phenotypes among prokaryotes.AppliedMicrobiology and Biotechnology,2014,98(23):9527- 9544.
    [19] Reed S C,Cleveland C C,Townsend A R.Functional ecology offree-living nitrogen fixation:a contemporary perspective.Annual Review of Ecology,Evolution,and Systematics,2011,42:489- 512.
    [20] Uroz S,Oger P,Lepleux C,Collignon C,Frey-Klett P,Turpault M P.Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems.Research in Microbiology,2011,162(9):820- 831.
    [21] 陈梅春,朱育菁,刘波,王阶平,刘晓港,杨文靖.基于宏基因组茉莉花植株土壤细菌多样性研究.农业生物技术学报,2018,26(9):1480- 1493.
    [22] Beckers B,de Beeck M O,Weyens N,Boerjan W,Vangronsveld J.Structural variability and niche differentiation inthe rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.Microbiome,2017,5(1):25.
    [23] Zarraonaindia I,Owens S M,Weisenhorn P,West K,Hampton-Marcell J,Lax S,Bokulich N A,Mills D A,Martin G,Taghavi S,van der Lelie D,Gilbert J A.The soil microbiome influences grapevine-associated microbiota.mBio,2015,6(2):e02527- 14.
    [24] Rinke C,Schwientek P,Sczyrba A,Ivanova N N,Anderson I J,Cheng J F,Darling A,Malfatti S,Swan B K,Gies E A,Dodsworth J A,Hedlund B P,Tsiamis G,Sievert S M,Liu W T,Eisen J A,Hallam S J,Kyrpides N C,Stepanauskas R,Rubin E M,Hugenholtz P,Woyke T.Insights into the phylogeny and coding potential of microbial dark matter.Nature,2013,499(7459):431- 437.
    [25] 李岩,杨晓东,秦璐,吕光辉,何学敏,张雪妮.两种盐生植物根际土壤细菌多样性和群落结构.生态学报,2018,38(9):3118- 3131.
    [26] 秦红,李昌晓,任庆水.不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响.生态学报,2017,37(10):3494- 3504.
    [27] 杨岳,闫伟,魏杰.内蒙古地区白桦根围土壤外生菌根真菌群落结构.菌物学报,2018,37(3):294- 304.
    [28] 乔沙沙,周永娜,柴宝峰,贾彤,李毳.关帝山森林土壤真菌群落结构与遗传多样性特征.环境科学,2017,38(6):2502- 2512.
    [29] 字洪标,向泽宇,王根绪,阿的鲁骥,王长庭.青海不同林分土壤微生物群落结构(PLFA).林业科学,2017,53(3):21- 32.
    [30] 周永娜,乔沙沙,刘晋仙,贾彤,李毳,柴宝峰,张乃桢,梁昭江.庞泉沟自然保护区华北落叶松与桦树林土壤微生物群落结构.应用与环境生物学报,2017,23(3):520- 526.
    [31] Dequiedt S,Thioulouse J,Jolivet C,Saby N P A,Lelievre M,Maron P A,Martin M P,Prévost-Bouré N C,Toutain B,Arrouays D,Lemanceau P,Ranjard L.Biogeographical patterns of soil bacterial communities.Environmental MicrobiologyReports,2009,1(4):251- 255.
    [32] Ranjard L,Dequiedt S,Jolivet C,Saby N P A,Thioulouse J,Harmand J,Loisel P,Rapaport A,Fall S,Simonet P,Joffre R,Bouré N C P,Maron P A,Mougel C,Martin M P,Toutain B,Arrouays D,Lemanceau P.Biogeography of soil microbial communities:a review and a description of the ongoing french national initiative.Agronomy for Sustainable Development,2010,30(2):359- 365.
    [33] 鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000:30- 109.
    [34] Wang X L,Wang Z K,Jiang P,He Y L,Mu Y D,Lv X H,Zhuang L.Bacterial diversity and community structure in therhizosphereof four Ferula species.Scientific Reports,2018,8(1):5345.
    [35] Nacke H,Thürmer A,Wollherr A,Will C,Hodac L,Herold N,Sch?ning I,Schrumpf M,Daniel R.Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.PLoS One,2011,6(2):e17000.
    [36] Xia Z W,Bai E,Wang Q K,Gao D C,Zhou J D,Jiang P,Wu J B.Biogeographic distribution patterns of bacteria in typical Chineseforest soils.Frontiers in Microbiology,2016,7:1106.
    [37] Liu J J,Sui Y Y,Yu Z H,Shi Y,Chu H Y,Jin J,Liu X B,Wang G H.High throughputsequencing analysis of biogeographical distribution of bacterial communitiesin the black soils of northeast China.Soil Biology andBiochemistry,2014,70:113- 122.
    [38] 翟婉璐,钟哲科,高贵宾,杨慧敏.覆盖经营对雷竹林土壤细菌群落结构演变及多样性的影响.林业科学,2017,53(9):133- 142.
    [39] 丁新景,敬如岩,黄雅丽,陈博杰,马风云.基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性.林业科学,2018,54(1):81- 89.
    [40] Yuan Y L,Si G C,Wang J,Luo T X,Zhang G X.Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbiology Ecology,2014,87(1):121- 132.
    [41] Uroz S,Ioannidis P,Lengelle J,Cébron A,Morin E,Buée M,Martin F.Functional assays and metagenomic analyses reveals differencesbetween the microbial communities inhabiting the soil horizons of aNorway spruce plantation.PLoS One,2013,8(2):e55929.
    [42] Kurth F,Zeitler K,Feldhahn L,Neu TR,Weber T,Kri?t■fek V,Wubet T,Herrmann S,Buscot F,Tarkka M T.Detection and quantification ofa mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity.BMC Microbiology,2013,13(1):205.
    [43] 薛银刚,刘菲,周璐璐,金珊,姜逸,王颖聪,江晓栋,王倩,施昕澜,薛柯.基于高通量测序的工业园区地下水和土壤细菌群落结构比较研究.生态毒理学报,2017,12(6):107- 115.
    [44] Pankratov T A,Ivanova A O,Dedysh S N,Liesack W.Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.Environmental Microbiology,2011,13(7):1800- 1814.
    [45] Kanokratana P,Uengwetwanit T,Rattanachomsri U,Bunterngsook B,Nimchua T,Tangphatsornruang S,Plengvidhya V,Champreda V,Eurwilaichitr L.Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis.Microbial Ecology,2011,61(3):518- 528.
    [46] Crawford D L.Lignocellulose decomposition by selected Streptomyces strains.Applied and Environmental Microbiology,1978,35(6):1041- 1045.
    [47] Elliott Juhnke M,Mathre D E,Sands D C.Identification and characterization of rhizosphere-competent bacteria of wheat.Applied andEnvironmental Microbiology,1987,53(12):2793- 2799.
    [48] 杨菁,周国英,田媛媛,刘倩丽,刘成锋,杨权,周洁尘.降香黄檀不同混交林土壤细菌多样性差异分析.生态学报,2015,35(24):8117- 8127.
    [49] Rousk J,B??th E,Brookes P C,Lauber C L,Lozupone C,Caporaso J G,Knight R,Fierer N.Soil bacterial and fungal communities across a pH gradient in an arable soil.The ISME Journal,2010,4(10):1340- 1351.
    [50] Magill A H,Aber J D.Variation in soil net mineralization rates with dissolved organic carbon additions.Soil Biology and Biochemistry,2000,32(5):597- 601.
    [51] Shen C C,Xiong J B,Zhang H Y,Feng Y Z,Lin X G,Li X Y,Liang W J,Chu H Y.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.SoilBiology and Biochemistry,2013,57:204- 211.
    [52] Jones R T,Robeson M S,Lauber C L,Hamady M,Knight R,Fierer N.A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.The ISME Journal,2009,3(4):442- 453.
    [53] 柳春林,左伟英,赵增阳,邱礼鸿.鼎湖山不同演替阶段森林土壤细菌多样性.微生物学报,2012,52(12):1489- 1496.
    [54] 隋心,张荣涛,钟海秀,许楠,王继丰,刘应竹,袁海峰,倪红伟.利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究.土壤,2015,47(5):919- 925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700