用户名: 密码: 验证码:
中国灌木生态系统的干旱化趋势及其对植被生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The study of shrubland drought dynamics in China and its impacts on vegetation growth
  • 作者:王亚林 ; 丁忆 ; 胡艳 ; 陈静 ; 范文武
  • 英文作者:WANG Yalin;DING Yi;HU Yan;CHEN Jing;FAN Wenwu;Chongqing Geomatics Center;
  • 关键词:灌木生态系统 ; EVI ; SPEI ; 干旱
  • 英文关键词:shrub ecosystem;;EVI;;SPEI;;drought
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:重庆市地理信息中心;
  • 出版日期:2018-12-21 16:37
  • 出版单位:生态学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41171445)
  • 语种:中文;
  • 页:181-189
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S718.5
摘要
大量研究表明,21世纪全球气温将持续升高,干旱将不断加剧,具有超强抗旱能力的灌木在未来的区域乃至全球生态系统过程中将会发挥越来越重要的作用。灌木在我国有着广泛的分布,其总面积超过了我国陆地面积的20%。本研究旨在通过计算中国灌木生态系统的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index, SPEI)来分析其干旱变化趋势及其对灌木生态系统植被生长的影响。结果显示,中国灌木生态系统的SPEI在1961—2013年间总体上呈显著地下降趋势,但其趋势在1992年发生了显著变化,这表明中国灌木生态系统正在持续地干旱化,并且在最近二十几年干旱化加剧。我们还分析了不同灌木生态系统EVI(Enhanced Vegetation Index, EVI)对SPEI变化的响应,结果显示不同的灌木生态系统类型对SPEI变化的响应不同。夏季,高寒荒漠灌木半灌木、温带荒漠灌木半灌木和温带落叶灌木EVI与SPEI变化显著正相关,而亚高山常绿灌木和亚热带常绿灌木EVI则与SPEI的变化显著负相关。温带落叶灌木EVI与春季SPEI变化显著正相关,但却与秋季和冬季的SPEI显著负相关。此外,亚热带常绿灌木EVI还与春季SPEI变化显著正相关。从空间上来看,北方的灌木生态系统比南方的灌木生态系统对干旱的变化更加敏感,同时,南方湿润地区的灌木在生态系统尺度也体现了较强的抗旱能力。在全球持续干旱化的大背景下,研究灌木生态系统EVI对干旱变化的响应将有助于对区域生态系统过程变化的理解。
        Existing studies showed that a persistently increasing trend of aridity will dominate the global climate change in the future. Shrubs, which are widely distributed in China, with their excellent drought resistance and tolerance may play more important-roles in the global ecosystem function. In this study, we calculated a drought index(Standardized Precipitation Evapotranspiration Index, SPEI) to analyze shrubland drought dynamics in China from 1961 to 2013. We found that the SPEI of shrublands in China decreased significantly and the trend was significantly changed in 1992, indicating that shrublands in China experienced a persistent drought period that intensified in recent years. We also analyzed the effects of SPEI variation on EVI(Enhanced Vegetation Index, EVI), and found that different shrubland types responded differently to SPEI variation. Summer SPEI affected high-cold desert, temperate desert, and temperate deciduous EVI positively, but affected subalpine evergreen and subtropical evergreen EVI negatively. Temperate deciduous EVI responded positively to spring SPEI, but negatively to autumn and winter SPEI. Furthermore, subtropical evergreen EVI was also positively affected by autumn SPEI. In terms of location, the shrublands in Northern China were more sensitive to drought dynamics than shrublands in the South. Additionally, shrublands in the humid area of Southern China showed strong drought resistance. Learning the response of shrublands EVI to drought dynamics will contribute to the understanding of ecosystem process variation in the background of the global persistently increasing trend of aridity in the future.
引文
[1] Dai A G.Drought under global warming:a review.Climate Change,2011,2(1):45- 65.
    [2] Ding Y H,Ren G Y,Zhao Z C,Xu Y,Luo Y,Li Q P,Zhang J.Detection,causes and projection of climate change over China:an overview of recent progress.Advances in Atmospheric Sciences,2007,24(6):954- 971.
    [3] Hansen J,Ruedy R,Sato M,Lo K.Global surface temperature change.Reviews of Geophysics,2010,48(4):RG4004.
    [4] Zhao M S,Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science,2010,329(5994):940- 943.
    [5] Piao S L,Wang X H,Ciais P,Zhu B,Wang T,Liu J.Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology,2011,17(10):3228- 3239.
    [6] Peng S S,Chen A P,Xu L,Cao C X,Fang J Y,Myneni,R B,Pinzon J E,Tucker C J,Piao S L.Recent change of vegetation growth trend in China.Environmental Research Letters,2011,6(4):044027.
    [7] Piao S L,Fang J Y,Zhou L M,Guo Q H,Henderson M,Ji W,Li Y,Tao S.Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999.Journal of Geophysical Research,2003,108(D14):4401.
    [8] Gao Q,Zhao P,Zeng X,Cai X,Shen W.A model of stomatal conductance to quantify the relationship between leaf transpiration,microclimate and soil water stress.Plant,Cell & Environment,2002,25(11):1373- 1381.
    [9] Gao Q,Yu M,Zhang X S,Xu H M,Huang Y M.Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment.Functional Plant Biology,2005,32(7):583- 598.
    [10] Gao Q,Yu M,Zhou C.Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs.PLoS One,2013,8(12):e84200.
    [11] 谭永芹,柏新富,朱建军,王仲礼,刘林德.干旱区五种木本植物枝叶水分状况与其抗旱性能.生态学报,2011,31(22):6815- 6823.
    [12] Smith S E,Fendenheim D M,Halbrook K.Epidermal conductance as a component of dehydration avoidance in Digitaria californica and Eragrostis lehmanniana,two perennial desert grasses.Journal of Arid Environments,2006,64(2):238- 250.
    [13] 中国科学院中国植被图编辑委员会.中华人民共和国植被图1∶1 000 000.北京:地质出版社,2007.
    [14] World Meteorological Organization.Standardized Precipitation Index User Guide.WMO-NO- 1090.Geneva:WMO,2012.
    [15] Vicente-Serrano S M,Beguería S,López-moreno J I.A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index.Journal of Climate,2010,23(7):1696- 1718.
    [16] 周丹,张勃,任培贵,张春玲,杨尚武,季定民.基于标准化降水蒸散指数的陕西省近50a干旱特征分析.自然资源学报,2014,29(4):677- 688.
    [17] Zhao M S,Heinsch F A,Nemani R R,Running S W.Improvements of the MODIS terrestrial gross and net primary production global data set.Remote Sensing of Environment,2005,95(2):164- 176.
    [18] Samanta A,Ganguly S,Hashimoto H,Devadiga S,Vermote E,Knyazikhin Y,Nemani R R,Myneni R B.Amazon forests did not green-up during the 2005 drought.Geophysical Research Letters,2010,37(5):L05401.
    [19] Wang Y L,Gao Q,Liu T,Tian Y Q,Yu M.The greenness of major shrublands in China increased from 2001 to 2013.Remote Sensing,2016,8(2):121.
    [20] Liang W,Yang Y T,Fan D M,Guan H D,Zhang T,Long D,Zhou Y,Bai D.Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology,2015,204:22- 36.
    [21] Jiang W G,Yuan L H,Wang W J,Cao R,Zhang Y F,Shen W M.Spatio-temporal analysis of vegetation variation in the Yellow River Basin.Ecological Indicators,2015,51:117- 126.
    [22] 王亚林,龚容,吴凤敏,范文武.2001—2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应.植物生态学报,2017,41(9):925- 937.
    [23] Piao S L,Fang J Y,Zhou L M,Ciais P,Zhu B.Variations in satellite-derived phenology in China′s temperate vegetation.Global Change Biology,2006,12(4):672- 685.
    [24] Zhang L,Xiao J F,Li J,Wang K,Lei L P,Guo H D.The 2010 spring drought reduced primary productivity in southwestern China.Environmental Research Letters,2012,7(4):045706.
    [25] 王东,张勃,安美玲,张调风,季定民,任培贵.基于SPEI的西南地区近53a干旱时空特征分析.自然资源学报,2014,29(6):1003- 1016.
    [26] 栗健,岳耀杰,潘红梅,叶信岳.中国1961—2010年气象干旱的时空规律——基于SPEI和Intensity analysis方法的研究.灾害学,2014,29(4):176- 182.
    [27] Xiao J F,Zhuang Q L.Drought effects on large fire activity in Canadian and Alaskan forests.Environmental Research Letters,2007,2(4):044003.
    [28] Allen C D,Macalady A K,Chenchouni H,Bachelet D,McDowell N,Vennetier M,Kitzberger T,Rigling A,Breshears D D,Hogg E H,Gonzalez P,Fensham R,Zhang Z,Castro J,Demidova N,Lim J L,Allard G,Running S W,Semerci A,Cobb N.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management,2010,259(4):660- 684.
    [29] Kurz W A,Dymond C C,Stinson G,Rampley G J,Neilson E T,Carroll A L,Ebata T,Safranyik L.Mountain pine beetle and forest carbon feedback to climate change.Nature,2008,452(7190):987- 990.
    [30] Xiao J F,Zhuang Q L,Liang E Y,Shao X M,McGuire A D,Moody A,Kicklighter D W,Melillo J M.Twentieth-century droughts and their impacts on terrestrial carbon cycling in China.Earth Interactions,2009,13(10):1- 31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700