用户名: 密码: 验证码:
植物光合作用的光抑制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photoinhibition of Plants Photosynthesis: Research Progress
  • 作者:周娜娜 ; 冯素萍 ; 高新生 ; 罗鑫 ; 武耀廷
  • 英文作者:Zhou Nana;Feng Suping;Gao Xinsheng;Luo Xin;Wu Yaoting;Hainan Tropic Ocean University, College of Life Science and Ecology;Key Laboratory of Tropical Crop Molecular Breeding of Sanya;Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences;Hainan University;
  • 关键词:光合作用 ; 光抑制 ; 作用机理 ; 研究历程 ; 防御机制 ; 影响因素
  • 英文关键词:photosynthesis;;photoinhibition;;action mechanism;;research process;;defense mechanism;;influencing factors
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:海南热带海洋学院生命科学与生态学院;三亚市热带植物分子育种实验室;中国热带农业科学院橡胶研究所;海南大学;
  • 出版日期:2019-05-20
  • 出版单位:中国农学通报
  • 年:2019
  • 期:15
  • 基金:海南省引进集成科技创新项目“花生高油酸/亚油酸的分子标记辅助选择育种研究”(KJHZ2013-04);; 三亚市农业科技创新项目“海南省地方花生品种高油酸分子标记研究”(2015KJ12);; MARS国际合作项目“花生高油酸育种”(1001603967);; 海南省重点研发项目“早熟特高产橡胶树新品种热研106的选育创新、区域试种及关键栽培技术研发”(ZDYF2016040)
  • 语种:中文;
  • 页:122-129
  • 页数:8
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:Q945.11
摘要
光合作用的光抑制是一种发生在所有植物上的生理胁迫,不仅在强光下发生,在低温、干旱、水淹、盐胁迫、高CO2浓度等环境胁迫下,也会发生。近年来无论是对其本质的认识,还是对其机理的研究都已取得很大进展。本研究概述了光系统I(PSI)、光系统II(PSII)的光抑制机理,对光抑制研究发展的历程进行了回顾,综述了光抑制的防御机制如热耗散、电子传递、活性氧清除机制、光合能力提高等,阐述了光抑制的影响因素包括低温胁迫、光照强度、水分胁迫、盐胁迫及CO2浓度等。最后提出了研究中存在的问题及今后的方向。
        Photoinhibition of photosynthesis is a physiological stress that occurs in all plants, not only under high light stress, but also under other environmental stresses including low temperature, drought, flooding, salt stress and high CO2 concentration. In recent years, many research achievements have been reported on the nature and the mechanism of photoinhibition. In this article, the authors summarize the photoinhibition mechanism of Photosystem I(PSI) and Photosystem II(PSII); review the development of photoinhibition;analyze the defensive mechanisms against photoinhibition, e.g. heat dissipation, electron transfer, activated oxygen clearance, improved photosynthetic capacity and etc. Furthermore, the authors elaborate on the factors affecting photoinhibition, including the low temperature stress, light exposure intensity, water stress, salt stress,CO2 concentration and etc. Taken together, the authors discuss the problems and the future directions of the research.
引文
[1] Foyer C H, Noctor G. Leaves in the dark see the light[J]. Science,2000a, 284(284):5414-5416.
    [2]许大全.植物光胁迫研究中的几个问题[J].植物生理学通讯,2003,39(5):493-495.
    [3] Maxwell K, Johnson G N. Chlorophyll fluorescencea practical guide[J]. Journal of experimental botany, 2000,51(345):659-668.
    [4] Aro E M, Virgin I, Andersson B. Photoinhibitition of Photosystem II, Inactivation, Protein damage and turnover[J]. Bioch in Bjophys Acta 1993,1143(2):113-134.
    [5]沈允刚,施教耐,许大全.动态光合作用[M].北京:科学出版社,1993:143-145.
    [6] Inoue K, Fujii Y, Yokoyama E, et al. The photoinhibition site of photosystern I in isilated chloroplasts[J]. Plant&Cell Physiol,1989,30(5):65-71.
    [7] Cadenas E. Biochemistry of oxygen toxicity[J]. Ann.Rev.Biochem,1989,58(1):79-110.
    [8] Golbeck J H. Structure, function and organization of the photosystem I reaction cencer complex[J]. Biochim Biophys Vcta,1987, 895(895):167-204.
    [9] Ball R, Wild A. History of photoinhibition research[J]. Photochern photobiol B, boil, 1993(20):79-85.
    [10] Kyle D J. The biochemical basis for photo inhibition of photosystem II//In:Kyle DJ.Osmond CB. Arntzen CHJ(eds)Topics in photosynthesis. Photoinhibition[M]. Amsterdam:Elsevier,New Fork,Oxford,1987(9):196-226.
    [11]张子山,张立涛,高辉远,等.不同光强与低温交叉胁迫下黄瓜PSⅠ与PSⅡ的光抑制研究[J].中国农业科学,2009,42(12):4288-4293.
    [12]秦立琴.非生物胁迫下花生叶片的光抑制机理[D].泰安:山东农业大学,2010.
    [13] Krause G H, Weis E. ChlorophyII fluoresernce and photosynthesis:the basics[J]. Annu Rev Plant Plant Physiol[J]. Plant Mol Biol,1991(42):313-349.
    [14] Flexas J, Medrano L. Energy dissipation in C3plant under drought[J]. Funct Plant Biol, 2002, 29(29):1209-1215.
    [15] Demmig-Adams B, Adams B, Adams W. The role of xanthophyII cycle carotenoids in the pretection of photosynthesis[J].Trends Plant Sci, 1996, 1(1):21-26.
    [16] Niyogi K K. photoprotection revisited:Genetic and Molecular approaches, Annu.Reo plant physiol[J]. Plant Mol Biol, 1999, 50(4):333-359.
    [17] Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant physiology, 2001,125(4):1558-1566.
    [18] Li X P, Gilmore Adam M, Niyogi Krishna K. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH-and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II[J]. The Journal of biological chemistry,2002,277(37):33590-33597.
    [19]徐坤,邹琦,郑国生.强光下姜叶片的光呼吸及叶黄素循环[J].园艺学报, 2002,29(1):47-51.
    [20]李朝霞,赵世杰,孟庆伟.光呼吸途径及其功能等[J].植物学通报,2003,20(2):190-197.
    [21] Kozi Asada. THE WATER-WATER CYCLE IN CHLOROPLASTS:Scavenging of Active Oxygens and Dissipation of Excess Photons[J].Annual Review of Plant Physiology&Plant Molecular Biology,1999,50(50):601-639.
    [22] Endo T, Mil H, Shikanai T, et al. Donation of electrons to plastoquinone by NAD(P)H dehyd rogenase and by ferredoxinquinone reductase in spinach chloroplasts[J]. Plant and Cell Physiol, 1997, 38(11):1272-1277.
    [23] T Endo, T Shikanai, F Sato, et al. NAD(P)H DehydrogenaseDependent, Antimycin A-Sensitive Electron Donation to Plastoquinone in Tobacco Chloroplasts[J]. Plant and Cell Physiology,1998,39(11):1226-1231.
    [24] Miyake C, Yokota A. Cyclic flow of electrons with in PSII in thylakoid membranes[J]. Plant and Cell Physiol, 2001, 42(5):508-515.
    [25] Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves[J]. Plant physiology, 1992, 100(4):1621-1626.
    [26] Satoh K, Fork D C, The relationship between state II to state I transitions and cyclic electron flow around photosystem I[J].Photosynth Res, 1983, 4(1):245-256.
    [27] Furbank R T, Horton P. Regulation of photosynthesis in isolated barley protoplasts:The contribution of cyclic photophosphorylation[J]. Biochim Biophys Acta,1987,894(2):332-338.
    [28] Foyer C H, Kunert K J, Lelandais M. Photooxida stress in plants[J]. Physiol Plant.1994, 92(4):696-717.
    [29] Choudhury N K, Behera R K. Photoinhibition of photosynthesis:Role of carotenoids in photoprotection of chloroplast constituents[J]. Photosynthetica, 2001,39(4):481-488.
    [30] Munne-Bosch S. The function of tocopherola and tocorienola in plants[J]. Crit Re Plant Sci, 2002(21):31-57.
    [31]王燕鹏,崔震海,朱延姝,等.玉米C4光合叶不同部位解剖结构和光抑制特性的比较[J].植物生理学通讯,2012,48(6):571-576.
    [32]崔红云.转C4基因(PEPC&PPDK)水稻光合生理及耐光抑制特性的研究[D].南京:南京师范大学, 2012.
    [33]刘小阳.光抑制的防御机制[J].宿州学院学报, 2004,19(5):83-86.
    [34] Hetherington S E, He J, Smillie R M. Photoinhibition at low temperature in chilling susceptible and resistant plants[J]. Plant Physiol, 1989, 90(4):1609-1615.
    [35]李新国,段伟,孟庆伟,等. PSI的低温光抑制[J].植物生理学通讯,2002,38(4):375-381.
    [36]孙永平.5-氨基乙酰丙酸(ALA)提高逆境条件下西瓜幼苗叶片光合与光抑制保护机理研究[D].南京:南京农业大学, 2009.
    [37]颉敏华.青花菜叶片的光抑制特性和光破坏防御机制及锌的影响[D].杨凌:西北农林科技大学,2009.
    [38]孙晓琳.番茄类囊体膜不饱和脂肪酸增多缓解低温下PSⅡ的光抑制[D].泰安:山东农业大学, 2011.
    [39]张国显.外源钙缓解低夜温导致番茄叶片光抑制的机理[D].沈阳:沈阳农业大学,2015.
    [40]张秀丽,张倩倩,许天修,等.施用化肥和农家肥缓解盐碱地桑树光合午休PSⅡ光抑制[J].草业科学, 2015,32(5):745-753.
    [41]王芳,杨莎,郭峰,等.钙对花生(Arachis hypogaea L.)幼苗生长、活性氧积累和光抑制程度的影响[J].生态学报,2015,35(5):1496-1504.
    [42] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982,33(4):317-345.
    [43]魏捷,余辉,李良壁,等.菠菜PSI颗粒中色素和蛋白的光破坏进程[J].科学通报, 2000,45(6):612-617.
    [44] Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves of Cucumis sativus L, at low temperatures is photosystem I,not system II[J]. PLANTA, 1994, 193(2):300-306.
    [45] Ishibashi M, Sonoike K, Watanabe A. The inhibition of photosynthesis after exposure of bean leaves to various low leaves of CO2[J]. Plant and Cell Physiol, 1997,38(3):619-624.
    [46] Snoike K. Various aspects of inhibition of photosynthesis under light/chilling stress:“photoinhibition at chilling temperature”versus“chilling damage in the light”[J]. Plant Res, 1998,111(111):121-129.
    [47] Tjus S E, M?ller B L, Scheller H V. Photosystem I is a nearly targer of photoinhibition in barely illuminated at chilling temperatures[J].Plant Physiol, 1998, 116(2):755-764.
    [48]徐婷婷.光与低温复合胁迫下杨梅叶片光抑制的分子调控机理研究[D].杭州:浙江农林大学,2015.
    [49] Golbeck J H, Bryant D A. Photosystem I. Curr Top Bioenerg[M].1991:163-177.
    [50]王振磊,陈海江,林敏娟,等.黄金梨和鸭梨叶片光合作用的光抑制及其恢复的比较研究[J].园艺学报, 2009, 36(9):1261-1268.
    [51] Powlem S B. Photoinhibition of photosyntheain induced by viaible light[J]. Ann Rev Plant Physiol, 1984, 35(10):15-50.
    [52]计玮玮.高温强光诱导砂梨叶片光抑制的机理研究[D].杭州:浙江大学,2012.
    [53]李志真,刘东焕,赵世伟,等.环境强光诱导玉簪叶片光抑制的机制[J].植物生态学报, 2014,38(7):720-728.
    [54]师生波,张怀刚,师瑞,等.青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J].植物生态学报, 2014,38(4):375-386.
    [55]胡文海,张斯斯,闫小红,等.长期遮荫后全光照对羊踯躅叶片光抑制及光保护机制的影响[J].井冈山大学学报:自然科学版, 2014,35(5):42-46.
    [56]孔海云.茶树低温光抑制发生的条件及遮荫效应研究[D].泰安:山东农业大学,2011.
    [57]刘广银,梁娇,隗溟.遮阴水稻转入自然强光后光合作用的光抑制和恢复[J].西南师范大学学报:自然科学版,2011,36(5):156-158.
    [58] Dale J E, Milthorpe F L. The Growth and Functioning of Leaves[M]. London:Cambridge University Preaa,1983:315-345.
    [59] Koglowaki T T. Water Defieita and Plant Growth IV[M]. New York:Academic Press, 1976:153-190.
    [60]谷昕,李志强,姜闯道,等.水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制[J].生态学报, 2009,29(12):6466-6474.
    [61] Munné-Bosch S, Jubany-MaríT, Alegre L. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts[J]. Plant, Cell and Environment, 2001,24(12):1319-1327.
    [62]林金科.水分胁迫对茶树光合作用的影响[J].福建农林大学学报:自然科学版,1998, 27(4):423-427.
    [63]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报, 2002,22(2):206-214.
    [64]刘云峰,秦洪文,石雷,等.水淹对水芹叶片结构和光系统Ⅱ光抑制的影响[J].植物学报, 2010,45(4):426-434.
    [65] Sudhir P R, Murthy S D S. Effects of salt stress on basic processes of photosynthesis[J]. New Journal of Chemistry, 2004,42(4):481-486.
    [66]宋旭丽,胡春梅,孟静静,等. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J].植物生态学报, 2011,35(6):681-686.
    [67] Mehta P, Jajoo A, Mathur S, et al. ChlorophyII a fluorescence study revealing effects of high salt stree on photosystemII in wheat leaves[J]. Plant Physiology and Biochemistry, 2010, 48:16-20.
    [68] Muuns R, Tester M. Mechanism of salinity to lerance[J]. Annual Review of Plant Biology. 2008(59):651-681.
    [69]惠俊爱,李永华,李卓,等.高浓度CO2对紫星凤梨光合作用和生长发育的影响.园艺学报,2006,33(5):1027-1032
    [70] Herrick J D, Thomas R B. No photosynthetic down regulation in sweetgum trees(Liquidambar styraciflua L.)after three years of CO2enrichment at the Duke Forest FACE experiment[J].Plant,Cell and Environment,2001,24:53-64.
    [71] Ziska L H, Hogan K P, Smith A P. Growth and photosynthetic responses of nine tropical species with long term exposure to elevated carbon dioxide[J].Oecologia,1991,86:383-389.
    [72] Schimel D S. Terrestrial ecosystems and the carbon cycle[J].Global Change Biology,1995,1:77-91.
    [73]林伟宏.植物光合作用对大气CO2浓度升高的反应[J].生态学报,1998,18(5):121-128.
    [74] Drake B, Gonzàlez-Meler M, Long S. More effi-cient plants:Aconsequence of rising atmospheric CO2[J].Annual Review of Plant Physiology and Plant Molecular Biology,1997,48(1):609-639.
    [75]郝兴宇,韩雪,李萍,等.大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响[J].应用生态学报,2011, 22(10):2776-2780.
    [76]郝兴宇.大气CO2浓度升高对中国主要作物影响的研究[M].北京:气象出版社,2014.
    [77] Leakey A D B, Uribelarrea M, Ainsworth E A, et al. Photosynthesis,productivity,and yield of maize are not affected by open-air elevation of CO2concentration in the absence of drought[J]. Plant Physiology,2006,140(2):779-790.
    [78]张其德,卢从明,刘丽娜,等. CO2倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响[J].植物学报, 1997,39(10):946-950.
    [79]张其德,卢从明,刘丽娜,等.二氧化碳加富对大豆叶片光系统II功能的影响[J].植物生态学报,1996,20(6):517-523.
    [80] Wang K Y, Kellomakl S. Effects of elevated CO2and soil-nitrogen supply on chlorophyll fluorescence and gas exchange in Scots pine,based on a branch-in-bag experiment[J]. New Phytologist,1997,136:277-286.
    [81] Ainsworth E, Rogers A, Nelson R, et al. Testing the‘source-sink’hypothesis of downregulation of photosynthesis in elevated[CO2]in the field with single gene substitutions in Glycine max[J].Agricultural and Forest Meteorology,2004,122(1):85-94.
    [82]王晨光,郝兴宇,李红英,等.CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J].核农学报,2015,29(8):1583-1588.
    [83]夏建荣,高坤山.高浓度CO2培养条件下极大螺旋藻光抑制研究[J].水生生物学报, 2006,1(26):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700