用户名: 密码: 验证码:
面源污染最佳管理措施多目标协同优化配置研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A review: multi-objective collaborative optimization of best management practices for non-point sources pollution control
  • 作者:耿润哲 ; 梁璇静 ; 殷培红 ; 王萌 ; 周丽丽
  • 英文作者:GENG Runzhe;LIANG Xuanjing;YIN Peihong;WANG Meng;ZHOU Lili;Policy Research Center for Environment and Economy, Ministry of Ecology and Environment Protection;
  • 关键词:面源污染 ; 最佳管理措施 ; 多目标优化 ; 流域管理
  • 英文关键词:non-point source pollution;;best management practice;;multi-objective collaborative optimization;;watershed management
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:生态环境部环境与经济政策研究中心;
  • 出版日期:2019-01-18 09:25
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金青年科学基金项目(41601551);; 第二次全国污染源普查项目《农业源污染物入水体负荷核算方法及系数体系构建》(2110399);; 环保部第三批城环总规试点项目(YGCQ-GGQY-201418)
  • 语种:中文;
  • 页:27-35
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X52
摘要
随着点源污染逐渐得到有效控制,面源污染逐渐成为我国多数地区影响水环境质量安全的主要因素。推广实施最佳管理措施(Best Management Practices, BMPs)被认为是控制面源污染的有效途径。受到区域种植制度、耕作方式、政策以及经济成本等因素的影响,导致流域尺度配置BMPs存在一定的困难,特别是随着流域空间尺度的变化,会进一步加大BMPs配置难度,使得BMPs的配置工作变为了一项多目标决策优化问题,即如何在有限的成本投入下,实现水环境质量改善的目标。需要在不同空间尺度下对流域BMPs进行多目标协同优化配置。从面源污染关键源区识别、BMPs削减效率评估以及BMPs多目标协同优化模拟3个方面对面源污染BMPs多目标协同优化配置研究进行了综述。结果表明:1)包含地块尺度和流域尺度的多尺度模型耦合系统的构建,将是实现关键源区精准识别的有效途径;2)BMPs削减效率对水质改善响应的滞后性、不确定性、时空异质性、污染物形态转换风险等均是今后BMPs削减效率评估中需要重点解决的关键问题;3)建立流域污染物负荷削减量与水质改善之间的非线性响应关系,并以此为基础将BMPs组合数据库、成本数据库以及基于进化算法的的优化配置方案进行耦合,进而构建多目标决策支持系统,以获取BMPs空间优化配置方案以及多目标成本-效益最优曲线。
        With point source pollution gradually being controlled, non-point source pollution has become a threat for water quality in most regions of China. Best management practices(BMPs) have been regarded as the most effective way to control non-point source pollution. However, the effectiveness of regional cropping systems, cultivation methods, policies, and economic costs lead to difficulties in BMP allocation at the watershed scale. In particular, the difficulties further increase with the changes at spatial scale. As a result, the allocation of BMPs has been moved to a multi-objective decision optimization program, to achieve water quality improvement targets under limited inputs. Therefore, there is a need for multi-objective collaborative optimization of BMPs at different spatial scales. Herein, we reviewed the current research pertaining to multi-objective collaborative optimization of BMPs for non-point source pollution with respect to three aspects: identify the critical source areas(CSAs) of non-point source pollution, assessment of BMPs cutting efficiency, and imitate multi-objective collaborative optimization of BMPs. The results indicate that: i) building multi-scale model coupling system, including land scale and watershed scale, would be the most efficient way to accurately identify CSAs; ii) reducing time lag, uncertainty, and spatial and temporal heterogeneity as well as the risk of pollution to improve water quality will be the key to the cutting efficiency of BMPs; iii) building a nonlinear response relation between watershed pollutant reduction and water quality improvement is essential. The BMP database, cost database, and scientific allocation schemes based on evolutionary algorithm(EA) can be combined to build a multi-scale decision supporting system. The allocation scheme of BMPs and the optimum curve of multi-scale cost-effectiveness can then be acquired.
引文
[1] Rissman A R,Carpenter S R.Progress on nonpoint pollution:barriers & opportunities.Daedalus,2015,144(3):35- 47.
    [2] 中华人民共和国环境保护部.2016中国环境状况公报.北京:中华人民共和国环境保护部,2017.
    [3] 贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制.环境科学,1998,19(5):87- 91,96- 96.
    [4] 王晓燕,王一峋,王晓峰,王振刚,汪清平,胡秋菊,蔡新广.密云水库小流域土地利用方式与氮磷流失规律.环境科学研究,2003,16(1):30- 33.
    [5] Rao N S,Easton Z M,Schneiderman E M,Zion M S,Lee D R,Steenhuis T S.Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading.Journal of Environmental Management,2009,90(3):1385- 1395.
    [6] Shen Z Y,Chen L,Xu L.A topography analysis incorporated optimization method for the selection and placement of best management practices.PLoS One,2013,8(1):e54520.
    [7] Maringanti C,Chaubey I,Popp J.Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control.Water Resources Research,2009,45(6):W06406.
    [8] 吴辉,刘永波,朱阿兴,杨典华,刘军志.流域最佳管理措施空间配置优化研究进展.地理科学进展,2013,32(4):570- 579.
    [9] Williams J R,Hann R W.Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints.Texas:Texas Water Resources Institute,1978.
    [10] Deb K,Kalyanmoy D.Multi-Objective Optimization Using Evolutionary Algorithms.New York:John Wiley & Sons,2001.
    [11] Muleta M K,Nicklow J W.Evolutionary algorithms for multiobjective evaluation of watershed management decisions.Journal of Hydroinformatics,2002,4(2):83- 97.
    [12] Kasat R B,Gupta S K.Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator.Computers & Chemical Engineering,2003,27(12):1785- 1800.
    [13] Veith T L,Wolfe M L,Heatwole C D.Optimization procedure for cost effective BMP placement at a watershed scale.JAWRA Journal of the American Water Resources Association,2003,39(6):1331- 1343.
    [14] 欧洋,王晓燕.景观对河流生态系统的影响.生态学报,2010,30(23):6624- 6634.
    [15] Diebel M W,Maxted J T,Nowak P J,Zanden M J V.Landscape planning for agricultural nonpoint source pollution reduction I:a geographical allocation framework.Environmental Management,2008,42(5):789- 802.
    [16] Maguire R O,Rub?k G H,Haggard B E,Foy B H.Critical evaluation of the implementation of mitigation options for phosphorus from field to catchment scales.Journal of Environmental Quality,2009,38(5):1989- 1997.
    [17] White M J,Storm D E,Busteed P R,Stoodley S H,Phillips S J.Evaluating nonpoint source critical source area contributions at the watershed scale.Journal of Environmental Quality,2009,38(4):1654- 1663.
    [18] Panagopoulos Y,Makropoulos C,Mimikou M.Decision support for diffuse pollution management.Environmental Modelling & Software,2012,30:57- 70.
    [19] Lee J G,Selvakumar A,Alvi K,Riverson J,Zhen J X,Shoemaker L,Lai F H.A watershed-scale design optimization model for stormwater best management practices.Environmental Modelling & Software,2012,37:6- 18.
    [20] Ketterings Q M,Cela S,Collick A S,Crittenden S J,Czymmek K J.Restructuring the P index to better address P management in New York.Journal of Environmental Quality,2017,46(6):1372- 1379.
    [21] Doody D G,Archbold M,Foy R H,Flynn R.Approaches to the implementation of the Water framework directive:targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.Journal of Environmental Management,2012,93(1):225- 234.
    [22] Sharpley A N,Weld J L,Beegle D B,Mullins G.Development of phosphorus indices for nutrient management planning strategies in the United States.Journal of Soil & Water Conservation,2003,58(3):137- 152.
    [23] Heckrath G,Bechmann M,Ekholm P,Ulén B,Djodjic F,Andersen H E.Review of indexing tools for identifying high risk areas of phosphorus loss in Nordic catchments.Journal of Hydrology,2008,349(1/2):68- 87.
    [24] Hewett C J M,Quinn P F,Heathwaite A L,Doyle A,Burke S,Whitehead P G,Lerner D N.A multi-scale framework for strategic management of diffuse pollution.Environmental Modelling & Software,2009,24(1):74- 85.
    [25] 李娜,郭怀成.农业非点源磷流失潜在风险评价——磷指数法研究进展.地理科学进展,2010,29(11):1360- 1367.
    [26] Woznicki S A,Nejadhashemi A P.Spatial and temporal variabilities of sediment delivery ratio.Water Resources Management,2013,27(7):2483- 2499.
    [27] Ghebremichael L T,Veith T L,Watzin M C.Determination of critical source areas for phosphorus loss:lake champlain basin,vermont.Transactions of the ASABE,2010,53(5):1595- 1604.
    [28] Jordan-Meille L,Rub?k G H,Ehlert P A I,Genot V,Hofman G,Goulding K,Recknagel J,Provolo G,Barraclough P.An overview of fertilizer-P recommendations in Europe:soil testing,calibration and fertilizer recommendations.Soil Use and Management,2012,28(4):419- 435.
    [29] Besalatpour A,Hajabbasi M A,Ayoubi S,Jalalian A.Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model.Eurasian Journal of Soil Science,2012,1:58- 63.
    [30] Zema D A,Bingner R L,Denisi P,Govers G,Licciardello F,Zimbone S M.Evaluation of runoff,peak flow and sediment yield for events simulated by the AnnAGNPS model in a Belgian agricultural watershed.Land Degradation & Development,2012,23(3):205- 215.
    [31] Wu L,Long T Y,Cooper W J.Simulation of spatial and temporal distribution on dissolved non-point source nitrogen and phosphorus load in Jialing River Watershed,China.Environmental Earth Sciences,2012,65(6):1795- 1806.
    [32] Valcu A,Rabotyagov S S,Kling C L.Flexible practice-based approaches for controlling multiple agricultural nonpoint-source water pollution//Proceedings of 2013 Annual Meeting.Washington:Agricultural and Applied Economics Association,2013.
    [33] Pionke H B,Gburek W J,Sharpley A N.Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin.Ecological Engineering,2000,14(4):325- 335.
    [34] Qiu Z,Hall C,Drewes D,Messinger G.Hydrologically sensitive areas,land use controls,and protection of healthy watersheds.Journal of Water Resources Planning and Management,2014,140(7):04014011.
    [35] Weld J L,Sharpley A N,Beegle D B,Gburek W J.Identifying critical sources of phosphorus export from agricultural watersheds.Nutrient Cycling in Agroecosystems,2001,59(1):29- 38.
    [36] Ghebremichael L T,Cerosaletti P E,Veith T L,Rotz C A,Hamlett J M,Gburek W J.Economic and phosphorus-related effects of precision feeding and forage management at a farm scale.Journal of Dairy Science,2007,90(8):3700- 3715.
    [37] Ghebremichael L T,Veith T L,Hamlett J M.Integrated watershed-and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.Journal of Environmental Management,2013,114:381- 394.
    [38] Cherry K A,Shepherd M,Withers P J A,Mooney S J.Assessing the effectiveness of actions to mitigate nutrient loss from agriculture:a review of methods.Science of the Total Environment,2008,406(1/2):1- 23.
    [39] Liu Y B,Yang W H,Qin C Z,Zhu A X.A review and discussion on modeling and assessing agricultural best management practices under global climate change.Journal of Sustainable Development,2016,9(1).doi:10.5539/jsd.v9n1p245.
    [40] Haas M B,Guse B,Fohrer N.Assessing the impacts of best management practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development.Journal of Environmental Management,2017,196:347- 364.
    [41] Wainger L A,Van Houtven G,Loomis R,Messer J,Beach R,Deerhake M.Tradeoffs among ecosystem services,performance certainty,and cost-efficiency in implementation of the chesapeake bay total maximum daily load.Agricultural and Resource Economics Review,2013,42(1):196- 224.
    [42] Panagopoulos Y,Makropoulos C,Mimikou M.Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.Journal of Environmental Management,2011,92(10):2823- 2835.
    [43] Meals D W,Dressing S A,Davenport T E.Lag time in water quality response to best management practices:a review.Journal of Environmental Quality,2010,39(1):85- 96.
    [44] Tatum V L,Jackson C R,McBroom M W,Baillie B R,Schilling E B,Wigley T B.Effectiveness of forestry best management practices (BMPs) for reducing the risk of forest herbicide use to aquatic organisms in streams.Forest Ecology and Management,2017,404:258- 268.
    [45] 孟凡德,耿润哲,欧洋,王晓燕.最佳管理措施评估方法研究进展.生态学报,2013,33(5):1357- 1366.
    [46] Heathwaite A L,Quinn P F,Hewett C J M.Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation.Journal of Hydrology,2005,304(1/4):446- 461.
    [47] Andersen H E,Kronvang B.Modifying and evaluating a P index for denmark.Water,Air,and Soil Pollution,2006,174(1/4):341- 353.
    [48] Grimaldi S,Angeluccetti I,Coviello V,Vezza P.Cost-effectiveness of soil and water conservation measures on the catchment sediment budget-the laaba watershed case study,burkina faso.Land Degradation & Development,2015,26(7):737- 747.
    [49] Heathwaite A L,Dils R M.Characterising phosphorus loss in surface and subsurface hydrological pathways.Science of the Total Environment,2000,251- 252:523- 538.
    [50] Brown L,Scholefield D,Jewkes E C,Lockyer D R,Prado A D.NGAUGE:a decision support system to optimise N fertilisation of British grassland for economic and environmental goals.Agriculture,Ecosystems & Environment,2005,109(1/2):20- 39.
    [51] Oenema O,van Liere L,Schoumans O.Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands.Journal of Hydrology,2005,304(1/4):289- 301.
    [52] 唐颖.SUSTAIN支持下的城市降雨径流最佳管理BMP规划研究[D].北京:清华大学,2010.
    [53] Makropoulos C K,Butler D.A multi-objective evolutionary programming approach to the ‘object location’ spatial analysis and optimisation problem within the urban water management domain.Journal Civil Engineering and Environmental Systems,2005,22(2):85- 101.
    [54] Arabi M,Govindaraju R S,Hantush M M.Costeffective allocation of watershed management practices using a genetic algorithm.Water Resources Research,2006,42(10):2405- 2411.
    [55] Hsieh C D,Yang W F.Optimal nonpoint source pollution control strategies for a reservoir watershed in Taiwan.Journal of Environmental Management,2007,85(4):908- 917.
    [56] Maringanti C,Chaubey I,Arabi M,Engel B.Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control.Environmental Management,2011,48(3):448- 461.
    [57] 陈磊.非点源污染多级优先控制区构建与最佳管理措施优选[D].北京:北京师范大学,2013
    [58] 耿润哲.流域非点源污染及管理措施优化配置研究——以怀柔区北宅小流域为例[D].北京:首都师范大学,2012.
    [59] Lautenbach S,Berlekamp J,Graf N,Seppelt R,Matthies M.Scenario analysis and management options for sustainable river basin management:application of the Elbe DSS.Environmental Modelling & Software,2009,24(1):26- 43.
    [60] Fassio A,Giupponi C,Hiederer R,Simota C.A decision support tool for simulating the effects of alternative policies affecting water resources:an application at the European scale.Journal of Hydrology,2005,304(1/4):462- 476.
    [61] Volk M,Hirschfeld J,Dehnhardt A,Schmidt G,Bohn C,Liersch S,Gassman P W.Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin.Ecological Economics,2008,66(1):66- 76.
    [62] Van Ittersum M K,Ewert F,Heckelei T,Wery J,Olsson J A,Andersen E,Bezlepkina I,Brouwer F,Donatelli M,Flichman G,Olsson L,Rizzoli A E,van der Wal T,Wien J E,Wolf J.Integrated assessment of agricultural systems-a component-based framework for the European Union (SEAMLESS).Agricultural Systems,2008,96(1/3):150- 165.
    [63] Veith T L,Wolfe M L,Heatwole C D.Cost-effective BMP placement:optimization versus targeting.Transactions of the ASAE,2004,47(5):1585- 1596.
    [64] Gburek W J,Gitau M,Jarrett A R.A tool for estimating best management practice effectiveness for phosphorus pollution control.Journal of Soil & Water Conservation,2005,60(1):1- 9.
    [65] Bekele E G,Nicklow J W.Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms.Water Resources Research,2005,41(10):W10406.
    [66] Rabotyagov S,Campbell T,Jha M,Gassman P W,Arnold J,Kurkalova L,Secchi S,Feng H L,Kling C L.Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone.Ecological Applications,2010,20(6):1542- 1555.
    [67] Gurnell A M,Rinaldi M,Belletti B,Bizzi S,Blamauer B,Braca G,Buijse A D,Bussettini M,Camenen B,Comiti F,Demarchi L,de Jalón D G,Tánago M G D,Grabowski R C,Gunn I D M,Habersack H,Hendriks D,Henshaw A J,Kl?sch M,Lastoria B,Latapie A,Marcinkowski P,Martínez-Fernández V,Mosselman E,Mountford J O,Nardi L,Okruszko T,O′Hare M T,Palma M,Percopo C,Surian N,van de Bund W,Weissteiner C,Ziliani L.A multi-scale hierarchical framework for developing understanding of river behaviour to support river management.Aquatic Sciences,2016,78(1):1- 16.
    [68] Allan J D.Landscapes and riverscapes:the influence of land use on stream ecosystems.Annual Review of Ecology,Evolution,and Systematics,2004,35:257- 284.
    [69] Wang L Z,Robertson D M,Garrison P J.Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams:implication to nutrient criteria development.Environmental Management,2007,39(2):194- 212.
    [70] Bernhardt E S,Palmer M A,Allan J D,Alexander G,Barnas K,Brooks S,Car J,Clayton S,Dahm C,Follstad-Shah J,Galat D,Gloss S,Goodwin P,Hart D,Hassett B,Jenkinson R,Katz S,Kondolf G M,Lake P S,Lave R,Meyer J L,O′Donnell T K,Pagano L,Powell B,Sudduth E.Synthesizing U.S.river restoration efforts.Science,2005,308(5722):636- 637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700