用户名: 密码: 验证码:
贵阳市百花水库消落带土壤汞形态分布及风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and Risk Assessment of Hg Species in Soil of the Water-level-fluctuating Zone in Baihua Reservoir
  • 作者:孙婷 ; 李秋华 ; 唐黎 ; 何应 ; 韩孟书 ; 陈峰峰
  • 英文作者:SUN Ting;LI Qiuhua;TANG Li;HE Ying;HAN Mengshu;CHEN Fengfeng;School of Geography & Environmental Science, Guizhou Normal University;Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province/Guizhou Normal University;Key Laboratory of Information and Computing Science Guizhou Province/Guizhou Normal University;School of Public Health, Guizhou Medical University;
  • 关键词:消落带(WLFZ) ; 汞形态 ; 风险评价 ; 百花水库
  • 英文关键词:water-level-fluctuating zone(WLFZ);;Hg species;;risk assessment;;Baihua Reservoir
  • 中文刊名:生态环境学报
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:贵州师范大学地理与环境科学学院;贵州师范大学/贵州省山地环境信息系统和生态环境保护重点实验室;贵州师范大学/贵州省信息与计算科学重点实验室;贵州医科大学公共卫生学院;
  • 出版日期:2019-04-18
  • 出版单位:生态环境学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(41563012;U1612442);; 贵州省科技厅项目(黔科合平台人才[2018]5805);; 贵州省教育厅项目(黔教合KY字[2017]032);; 民族地理研究专项资金项目(民地科[2013]07)
  • 语种:中文;
  • 页:193-201
  • 页数:9
  • CN:44-1661/X
  • ISSN:1674-5906
  • 分类号:X53
摘要
为了解百花水库消落带土壤汞污染风险,系统采集了该区的土壤样品,分析总汞(THg)、汞形态和甲基汞(MeHg)分布情况,探讨汞的生物有效性,并对比分析了土壤THg和汞形态的污染风险。结果表明,百花水库消落带土壤THg质量分数具有显著的空间差异性(n=45,P<0.05)。土壤THg质量分数范围为88.83-521.14μg·kg~(-1),平均为(226.08±129.62)μg·kg~(-1)。80%的采样点土壤THg质量分数超过了背景水平。土壤中不同形态汞占THg质量分数大小顺序为:强结合态(36.28%)>硫化物结合态(33.09%)>有机结合态(30.35%)>水溶态(0.19%)>胃酸溶态(0.08%),表明前3种形态汞为研究区土壤Hg的主要赋存形态。消落带土壤中生物有效态汞(BioavailableHg,Bio-Hg)质量分数为22.39-168.41μg·kg~(-1),占THg的比例为8.81%-58.68%。土壤MeHg平均质量分数为(3.70±4.49)μg·kg~(-1),S15采样点土壤MeHg质量分数显著高于其他采样点(n=45,P<0.05)。地积累指数、潜在生态危害指数和风险评估编码法(Riskassessmentcode,RAC)的评价结果均表明,百花水库消落带土壤汞污染生态较高,S5采样点土壤Bio-Hg质量分数已超过土壤汞背景水平。百花水库消落带土壤的汞污染风险不容忽视。
        To analyze the environmental risk of Hg in soil of the water-level-fluctuating zone(WLFZ) in Baihua Reservoir, soil samples were collected systematically. The concentrations of total Hg(THg), Hg species and methylmercury(MeHg) were analyzed.Also the bioavailable of Hg in soil were discussed. Geoaccumulation index, Hakanson potential ecological risk index and risk assessment code were applied to assess the environmental risk of THg and Hg species, respectively. The results showed that significant differences(n=45, P<0.05) of THg mass fractions in different sites were observed in soil of WLFZ in Baihua Reservoir. The mass fractions of THg were in the range of 88.83-521.14 μg·kg~(-1), with an average of(226.08±129.62) μg·kg~(-1). Approximately, 80% of soil samples were higher than the soil background value of Guizhou Province. The percentage of five Hg species in soil followed the order:elemental mercury(36.28%)>mercuric sulfide(33.09%)>orgnao-chelated mercury(30.35%)>water soluble mercury(0.19%)>human stomach acid' soluble mercury(0.08%). This indicated that the former three of Hg species were in the domination of soil. The average mass fraction of bioavailable Hg was 22.39-168.41 μg·kg~(-1), and the percentage of bioavailable Hg to THg was in the range of 8.8%-58.9%. The average mass fraction of MeHg in soil was(3.70±4.49) μg·kg~(-1). The greatest mass fraction of MeHg presented at S15 site which was significantly higher than that in the other sites(n=45, P<0.05). Based on the geoaccumulation index, Hakanson potential ecological risk index and risk assessment code, these three evaluation results showed Hg species had a high potential ecological risk. The mass fraction of bioavaiable Hg in soil at S15 site was greater than the background level of mercury in soil. As a summary, the real environmental level of Hg in soil of WLFZ in Baihua Reservoir should not be ingnore.
引文
BLOOM N S,PREUS E,KATON J,et al.,2003.Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils[J].Analytica Chimica Acta,479(2):233-248.
    BIRKETT J W,NORENG J M K,LESTER J N,2002.Spatial distribution of mercury in the sediments and riparian environment of the River Yare,Norfolk,UK[J].Environmental Pollution,116(1):65-74.
    CHANDRAJITH R,OKUMURA M,1996.Geochemistry of mercury in sediments from Lake Biwa in Japan[J].Lakes&Reservoirs Research&Management,2(3-4):181-186.
    DU H X,MING M,TAO S,et al.,2017.Mercury-methylating genes dsrB,and hgcA,in soils/sediments of the Three Gorges Reservoir[J].Environmental Science&Pollution Research,24(5):5001-5011.
    FENG H,HAN X F,ZHANG W G,et al.,2004.A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization[J].Marine Pollution Bulletin,49(11-12):910-915.
    GBOGBO F,OTOO S D,HUAGO R Q,et al.,2017.High levels of mercury in wetland resources from three river basins in Ghana:a concern for public health[J].Environmental Science and Pollution Research,24(6):5619-5627.
    HAKANSON L,1980.An ecological risk index for aquatic pollution control.a sedimentological approach[J].Water Research,14(8):975-1001.
    HUGGETT D B,STEEVENS J A,ALLGOOD J C,et al.,2001.Mercury in sediment and fish from North Mississippi Lakes[J].Chemosphere,42(8):923-929.
    HEYEA A,MASON R P,KIM E H,et al,.2006.Mercury methylation in estuaries:Insights from using measuring rates using stable mercury isotopes[J].Marine Chemistry,102(1-2):134-147.
    KLERK L D,KLERK A D,WEPENER V,2013.An Assessment of Mercury Contamination and the Relationship Between Environmental Variables and Mercury Concentrations in a Seasonal Wetland[J].Water Air&Soil Pollution,224(5):1-15.
    LINDQVIST O,JOHANSSON K,BRINGMARK L,et al.,1991.Mercury in the Swedish Environment-recent research on causes,consequences and corrective methods[J].Water Air&Soil Pollution,55(1-2):1-261.
    MULLER G,1969.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,2(108):108-118.
    O’DRISCOLL N J,CANáRIO J,CROWELL N,et al.,2011.Mercury Speciation and Distribution in Coastal Wetlands and Tidal Mudflats:Relationships with Sulphur Speciation and Organic Carbon[J].Water Air&Soil Pollution,220(1-4):313-326.
    QIU G L,FENG X B,WANG S F,et al.,2005.Mercury and methylmercury in riparian soil,sediments,mine-waste calcines,and moss from abandoned Hg mines in east Guizhou province,southwestern China[J].Applied Geochemistry,20(3):627-638.
    REGNELL O,WATRAS C J,BO T,et al.,2009.Mercury in a Boreal Forest Stream-Role of Historical Mercury Pollution,TOC,Temperature,and Water Discharge[J].Environmental Science&Technology,43(10):3514-3521.
    SHI J B,LIANG L N,JIANG G B,et al.,2005.The speciation and bioavailability of mercury in sediments of Haihe River,China[J].Environment International,31(3):357-365.
    YAN H Y,FENG X B,SHANG L H,et al.,2008.The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir,Guizhou province,China[J].Science of the Total Environment,407(1):497-506.
    YU G B,LIU Y,YU S,et al.,2011.Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments[J].Chemosphere,85(6):1080-1087.
    ZHANG L P,YE X,FENG H,et al.,2007.Heavy metal contamination in western Xiamen Bay sediments and its vicinity,China[J].Marine Pollution Bulletin,54(7):974-82.
    邓龙,李秋华,李小峰,等,2016.贵州百花水库消落带常见植物中汞与砷的富集特征[J].安全与环境学报,16(2):211-217.DENG L,LI Q H,LI X F,et al.,2016.Enrichment features of mercury and arsenic pollutants in the water-level-fluctuating zone of Guizhou Baihua Reservoir and their impact on the general flora and fauna[J].Journal of Safety and Environment,16(2):211-217.
    何天容,冯新斌,戴前进,等,2004.萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J].地球与环境,32(2):83-86.HE T R,FENG X B,DAI Q J,et al.,2004.Determination of Methyl Mercury in Sediments and Soils by GC-CVAFS after Aqueous Phase Ethylation[J].Earth and Environment,32(2):83-86.
    何天容,冯新斌,郭艳娜,等,2008.红枫湖沉积物中汞的环境地球化学循环[J].环境科学,29(7):1768-1774.HE T R,FENG X B,GUO Y N,et al.,2008.Geochemical Cycling of Mercury in the Sediment of Hongfeng Reservoir[J].Environmental Science,29(7):1768-1774.
    胡国成,张丽娟,齐剑英,等,2015.贵州万山汞矿周边土壤重金属污染特征及风险评价[J].生态环境学报,24(5):879-885.HU G C,ZHANG L J,QI J Y,et al.,2015.Contaminant Characteristics and Risk Assessment of Heavy Metals in Soils from Wanshan Mercury Mine Area,Guizhou Province[J].Ecology and Environmental Sciences,24(5):879-885.
    刘汝海,刘诗璇,王杰,等,2017.秋夏季黄河三角洲湿地土壤汞和甲基汞的变化[J].环境科学学报,37(1):272-279.LIU R H,LIU SH X,WANG J,et al.,2017.Change of mercury and methylmercury in Yellow River Delta wetlands from autumn to summer[J].Acta Scientiae Circumstantiae,37(1):272-279.
    李秋华,高廷进,孟博,等,2014.贵州高原水库冬季浮游植物中汞及甲基汞分布特征[J].湖泊科学,26(1):92-100.LI Q H,GAO T J,MENG B,et al.,2014.Distribution characteristics of mercury and methylmercury in phytoplankton at Guizhou Plateau reservoirs in winter[J].Journal of Lake Sciences,26(1):92-100.
    李秋华,2018.贵州高原水库富营养化特征及评价[J].贵州师范大学学报(自然科学版),36(2):1-8.LI Q H,2018.Characteristics and evaluation of eutrophication in Guizhou plateau reservoirs[J].Journal of Guizhou Normal University(Natural Sciences),36(2):1-8.
    李仲根,冯新斌,何天容,等,2005.王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J].矿物岩石地球化学通报,24(2):140-143.LI ZH G,FENG X B,HE T R,et al.,2005.Determination of Total Mercury in Soil and Sediment by Aquaregia Digestion in the Water Bath Coupled with Cold Vapor Atom Fluorescence Spectrometry[J].Bulletin of Mineralogy,Petrology and Geochemistry,24(2):140-143.
    刘丽琼,2011.胡敏酸对矿物结合汞的还原与释放特征的影响[D].重庆:西南大学:8-11.LIU L Q,2011.Effect of Humic Acids on the Reduction and Release Characteristics of mineral bound Hg[D].Chongqing:Southwest University.
    王定勇,朱金山,2013.三峡库区消落带沉积物中汞的赋存形态及生物可利用性研究[J].西南大学学报(自然科学版),35(11):14-20.WANG D Y,ZHU J S H,2013.Chemical Speciation and Bioavailability of Mercury in the Sediments of the Riparian Zone of Three Gorges Reservoir Area,China[J].Journal of Southwest University(Natural Science Edition),35(11):14-20.
    吴婷婷,王明猛,陈旭锋,等,2017.唐山陡河水库沉积物汞的分布、来源及污染评价[J].环境科学,38(3):979-986.WU T T,WANG M M,CHEN X F,et al.,2017.Distributions,Sources and Pollution Assessment of Hg in Sediment of Douhe Reservoir in Tangshan City[J].Environmental Science,38(3):979-986.
    许浩,韩丽媛,茹淑华,等,2016.不同有机肥中Cu、Zn在农田土壤中的有效性与形态归趋[J].植物营养与肥料学报,22(4):998-1009.XU H,HAN L Y,RU SH H,et al.,2016.Bioavailability and form tendency of Cu and Zn in farmland soils after application of different organic fertilizers[J].Journal of Plant Nutrition and Fertilizer,22(4):998-1009.
    肖晶,李秋华,孙荣国,等,2016.百花水库消落带及库岸土壤重金属空间分布和风险评价[J].环境污染与防治,38(11):31-37.XIAO J,LI Q H,SUN R G,et al.,2016.Spatial distribution and risk assessment of heavy metals in soil from water-level-fluctuation belt and bank around Baihua Reservoir[J].Environmental Pollution&Control,38(11):31-37.
    张成,陈宏,王定勇,等,2014.三峡库区消落带土壤汞形态分布与风险评价[J].环境科学,35(3):1060-1067.ZHANG C,CHEN H,WANG D Y,et al.,2014.Distribution and Risk Assessment of Mercury Species in Soil of the Water-Level-Fluctuating Zone in the Three Gorges Reservoir[J].Environmental Science,35(3):1060-1067.
    郑冬梅,杨继松,李航,等,2017.辽河口不同类型湿地土壤汞、甲基汞含量及其影响因素[J].生态学杂志,36(4):1067-1071.ZHENG D M,YANG J S,LI H,et al.,2017.Mercury and methylmercury concentrations and their influencing factors in soils of different types of wetlands of Liaohe Estuary[J].Chinese Journal of Ecology,36(4):1067-1071.
    张怀静,翟世奎,周勇华,等,2016.闽浙沿岸海域沉积物中汞和甲基汞的含量分布及其影响因素[J].海洋地质与第四纪地质,36(6):163-174.ZHANG H J,ZHAI SH K,ZHOU Y H.,et al.,2016.Distributions of Mercury and Methylmercury in Sediments of Min-Zhe Coastal Area and Influencing Factors[J].Marine Geology&Quaternary Geology,36(6):163-174.
    赵涛,王兴润,杨晓进,等,2015.氯盐对汞化合物污染土壤热脱附过程的影响[J].环境科学研究,28(3):425-430.ZHAO T,WANG X R,YANG X J,et al.,2015.Influence of Chlorine Salt on Soil Contaminated with Mercury Compounds during Thermal Desorption Process[J].Research of Environmetal Sciences,28(3):425-430.
    赵彦龙,李心清,丁文慈,等,2007.水中有机质矿化作用的生物地球化学室内模拟研究[J].地球与环境,35(3):233-238.ZHAO Y L,LI X Q,DING W C,et al.,2007.Laboratory Bio-geochemical Study on Mineralization of Organic Matter in Water[J].Earth and Environment,35(3):233-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700