用户名: 密码: 验证码:
南方海相页岩物质组成与孔隙微观结构耦合关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The coupling relationship between material composition and pore microstructure of southern China marine shale
  • 作者:李文镖 ; 卢双舫 ; 李俊乾 ; 张鹏飞 ; 陈晨 ; 王思远
  • 英文作者:Li Wen-biao;Lu Shuang-fang;Li Jun-qian;Zhang Peng-fei;Chen Chen;Wang Si-yuan;Research Institute of Unconventional Oil & Gas and Renewable Energy,China University of Petroleum;School of Geosciences,China University of Petroleum;
  • 关键词:页岩 ; 物质组成 ; 孔隙形态 ; 孔隙结构 ; 分形特征 ; 耦合关系
  • 英文关键词:Shale;;Material composition;;Pore shape;;Pore structure;;Fractal characteristics;;Coupling relationship
  • 中文刊名:天然气地球科学
  • 英文刊名:Natural Gas Geoscience
  • 机构:中国石油大学(华东)非常规油气与新能源研究院;中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2019-01-10
  • 出版单位:天然气地球科学
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(编号:41672130;41602131);; 国家科技重大专项(编号:2016ZX05061-003-001);; 中国石化科技项目(编号:P17027-3)联合资助
  • 语种:中文;
  • 页:31-42
  • 页数:12
  • CN:62-1177/TE
  • ISSN:1672-1926
  • 分类号:P618.13
摘要
为研究页岩物质组成与孔隙微观结构耦合关系,对南方海相五峰组—龙马溪组30个高—过成熟页岩样品开展低温氮气吸附实验,并根据迟滞回线形态划分3类页岩。结果表明:(1)黏土矿物主要发育板状孔,孔径较大,从微孔(<2nm)到宏孔(>50nm)均较为发育;有机质主要发育墨水瓶状孔,主要为微孔和介孔(2~50nm)级别。(2)页岩比表面积主要由微孔、介孔贡献,其中微孔比表面积主要由有机质提供,黏土矿物主要提供介孔、宏孔比表面积;总孔体积主要由介孔、宏孔贡献,其中有机质主要贡献微孔、介孔体积,黏土矿物主要贡献宏孔体积。(3)样品普遍具有三段分形特征,且在不同孔径范围,墨水瓶状孔均要较板状孔复杂。研究成果有助于认识页岩气的储集、运移规律。
        To explore the coupling relationship between material composition and pore microstructure,30 marine shale samples with high-over maturity from the Wufeng and Longmaxi Formations,Southern China were analyzed by using nitrogen adsorption method.According to the shape of hysteresis,3types of shales are identified.The results show that clay mineral mainly develops slit pores ranging from micropore(<2nm)to macropore(>50nm),while organic matter mainly develops inkbottle pores with the size of mesopore(2-50nm).Whether in BET specific surface area(SSA)or total pore volume(PV),mesopores always makes the largest contribution.Micropores make the second largest contribution to the SSA,while macropores offer moderate PV.The SSA of microporeis mainly provided by organic matter,and clay minerals mainly contribute to the SSA of mesopores and macropores.Clay minerals mainly provide macropore volume,while organic matter mainly contributes to micropore and mesopore volume.The shale samples generally show three stages of fractal characteristics,and in the range of different pore size,the inkbottle pores are more complex than slit pores.The results are helpful to understand the law of gas accumulation and migration.
引文
[1] Yang Feng,Ning Zhengfu,Liu Huiqing.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115(1):378-384.
    [2] Ji Wenming,Song Yan,Jiang Zhenxue,et al.Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity:A case study of the Triassic strata in the southeastern Ordos Basin,China[J].International Journal of Coal Geology,2014,134-135(13):61-73.
    [3] Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256.侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.
    [4] Xue Bing,Zhang Jinchuan,Tang Xuan,et al.Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation,northwest Guizhou[J].Acta Petrolei Sinica,2015,36(2):138-149.薛冰,张金川,唐玄,等.黔西北龙马溪组页岩微观孔隙结构及储气特征[J].石油学报,2015,36(2):138-149.
    [5] Tian Hua,Zhang Shuichang,Liu Shaobo,et al.The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J].Natural Gas Geoscience,2016,27(3):494-502.田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502.
    [6] Shi Miao,Yu Bingsong,Zhang Jinchuan,et al.Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation,southeastern Sichuan Basin,China[J].Marine&Petroleum Geology,2018,94(6):166-178.
    [7] Li Zhiqing,Shen Xin,Qi Zhiyu,et al.Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry,N2 adsorption and NMR methods[J].Journal of Natural Gas Science&Engineering,2018,53(5):12-21.
    [8] Zhu Hanqing,Jia Ailin,Wei Yunsheng,et al.Pore structure and supercriticial methane sorption capacity of organic-rich shales in southern Sichuan Basin[J].Acta Petrolei Sinica,2018,39(4):391-401.朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.
    [9] Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
    [10] Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312-322.邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322.
    [11] Duan Yonggang,Cao Tingkuan,Yang Xiaoying,et al.Simulation of gas flow in nano-scale pores of shale gas deposits[J].Journal of Southwest Petroleum University:Science&Technology Edition,2015,37(3):63-68.段永刚,曹廷宽,杨小莹,等.页岩储层纳米孔隙流动模拟研究[J].西南石油大学学报:自然科学版,2015,37(3):63-68.
    [12] Yang Rui,He Sheng,Yi Jizheng,et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area,Sichuan Basin:Investigations using FE-SEM,gas adsorption and helium pycnometry[J].Marine&Petroleum Geology,2016,70(2):27-45.
    [13] Yang Rui,He Sheng,Hu Qinhong,et al.Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale,Sichuan Basin(China)[J].Fuel,2017,197(11):91-99.
    [14] Xi Zhangdong,Wang Jing,Hu Jingang,et al.Experimental investigation of evolution of pore structure in Longmaxi marine shale using an anhydrous pyrolysis technique[J].Mineral,2018,8(6):226.
    [15] Yang Rui,He Sheng,Hu Qinghong,et al.Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin,China[J].Marine&Petroleum Geology,2016,77(9):247-261.
    [16] Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427.田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.
    [17] Hu Jingang,Tang Shuheng,Zhang Songhang.Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J].Journal of Natural Gas Science&Engineering,2016,28(6):522-535.
    [18] Chen Yanyan,Zou Caineng,Maria Mastalerz,et al.Porosity and fractal characteristics of shale across a maturation gradient[J].Natural Gas Geoscience,2015,26(9):1646-1656.陈燕燕,邹才能,Maria Mastalerz,等.页岩微观孔隙演化及分形特征研究[J].天然气地球科学,2015,26(9):1646-1656.
    [19] Strapoc D,Mastalerz M,Schimmelmann A,et al.Geochemical constraints on the origin and volume of gas in the New Albany shale(Devonian-Mississippian),eastern Illinois Basin[J].AAPG Bulletin,2010,94(11):1713-1740.
    [20] Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623.杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.
    [21] Avnir D,Jaroniec M.An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J].Langmuir,1989,5(6):1431-1433.
    [22] Zhang Chuanghui,Zhu Yanming,Liu Yu,et al.Pore and fractal characteristics of shale in different maturity[J].FaultBlock Oil&Gas Field,2016,23(5):583-588.张闯辉,朱炎铭,刘宇,等.不同成熟度页岩孔隙及其分形特征[J].断块油气田,2016,23(5):583-588.
    [23] Xi Zhaodong,Tang Shuheng,Wang Jing,et al.Pore structure and fractal characteristics of Niutitang shale from China[J].Minerals,2018,8(4):163.
    [24] Zhao Difei,Guo Yinghai,Xie Delu,et al.Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108.赵迪斐,郭英海,解德录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108.
    [25] Tang Xianglu,Jiang Zhenxue,Li Zhuo,et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin,China[J].Journal of Natural Gas Science&Engineering,2015,23(2):464-473.
    [26] Xi Zhaodong,Tang Shuheng,Li Jun,et al.Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J].Natural Gas Geoscience,2017,28(3):366-376.郗兆栋,唐书恒,李俊,等.沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J].天然气地球科学,2017,28(3):366-376.
    [27] Xiong Jian,Liu Xiangjun,Liang Lixi.Fractal characteristics of organic rich shale pore in Sichuan Basin,China[J].Fault-Block Oil&Gas Field,2017,24(2):184-189.熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征[J].断块油气田,2017,24(2):184-189.
    [28] Yao Minglei,Shao Longyi,Hou Haihai,et al.Coal Reservoir pore structural and fractal features in Huainan and Huaibei coalfields[J].Coal Geology of China,2018,30(1):30-37.姚铭檑,邵龙义,侯海海,等.两淮煤田煤储层吸附孔孔隙结构及分形特征[J].中国煤炭地质,2018,30(1):30-37.
    [29] Sing K S W,Everett D H,Haul R A W,et al.Reportingphysisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure&Applied Chemistry,1985,57(4):603-619.
    [30] Li Zhuo,Jiang Zhenxue,Tang Xianglu,et al.Lithofacies characteristics and its effect on pore structure of the marine shale in the Low Silurian Longmaxi Formation,Southeastern Chongqing[J].Earth Science,2017,42(7):1116-1123.李卓,姜振学,唐相路,等.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J].地球科学,2017,42(7):1116-1123.
    [31] Chen Liang,Tan Kaixuan,Liu Jiang,et al.Pore structure fractal features of the Ore-bearing layer from a sandstone-type uranium deposit,Xinjiang[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2012,51(6):139-144.陈亮,谭凯旋,刘江,等.新疆某砂岩铀矿含矿层孔隙结构的分形特征[J].中山大学学报:自然科学版,2012,51(6):139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700