用户名: 密码: 验证码:
含磷基材固化/稳定化铅污染土的铅形态演化和浸出特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:LEAD SPECIATION EVOLUTION AND LEACHING CHARACTERISTICS OF LEAD CONTAMINATED SOIL SOLIDIFIED AND STABILIZED WITH PHOSPHORUS CONTAINING SUBSTRATE
  • 作者:熊欢 ; 范鹤 ; 高俊峰 ; 刘磊
  • 英文作者:XIONG Huan;FAN He;GAO Jun-feng;LIU Lei;College of Building and Civil Engineering,Shenyang University of Technology;Wuhan Environment Investment & Development Group Municipal Waste Management Co.,Ltd;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences;Hubei Key Laboratory of Contaminated Clay Science & Engineering;
  • 关键词:固化/稳定化 ; 铅污染土 ; 浸出特性 ; 形态演化 ; 生态风险
  • 英文关键词:solidification/stabilization(S/S);;lead contaminated soil;;leaching characteristics;;speciation evolution;;ecological risk
  • 中文刊名:环境工程
  • 英文刊名:Environmental Engineering
  • 机构:沈阳工业大学建筑与土木工程学院;武汉环投城市废弃物运营管理有限公司;中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;污染泥土科学与工程湖北省重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:环境工程
  • 年:2019
  • 期:05
  • 语种:中文;
  • 页:42-47
  • 页数:6
  • CN:11-2097/X
  • ISSN:1000-8942
  • 分类号:X53
摘要
采用过磷酸钙-水泥(SSPC)及水泥(OPC)固化稳定铅(Pb)重金属污染土。通过无侧限抗压强度(UCS)、毒性浸出(TCLP)试验研究了铅污染土固化体的力学和浸出特性,并通过形态提取(BCR)分析了固化体中铅赋存形态,结合重金属形态分布特征,运用风险评价编码法(RAC)评价了重金属的潜在风险程度。试验结果表明:过磷酸钙-水泥(SSPC)和水泥均可显著降低固化体中铅浸出特性,过磷酸钙-水泥(SSPC)固化体的浸出浓度远低于水泥固化体,当过磷酸钙添加量分别为5%和10%时,固化体中铅浸出浓度低于GB/T 5085. 3—2007《危险废物鉴别标准浸出毒性鉴别》。形态提取试验表明:水泥(OPC)和过磷酸钙-水泥(SSPC)均可促使Pb从活性态(弱酸提取态)向较稳定态(可还原态、残渣态)转化,但过磷酸钙-水泥(SPCC)固化体中残渣态Pb的含量较高。基于改进BCR法获得F1(弱酸态)的基础上,运用风险评价编码法评价了固化后污染土中铅的生态风险等级,对比未固化土,生态风险等级大幅降低。
        Research about lead contaminated soil solidified and stabilized with calcium superphosphate-cement composite( SSPC) and cement( OPC) was carried out in this paper. Unconfined compressive strength( UCS) test and toxicity characteristic leaching procedure( TCLP) test were conducted to investigate the mechanical and leaching characteristics of the solidified body of lead contaminated soils,and the BCR test was used to analyze the occurrence form of lead in the solidified body,and then combining with morphological distribution characteristics of heavy metals,the potential risk degree of heavy metals was assessed by risk assessment coding( RAC) method. The test results showed that: both calcium superphosphatecement( SSPC) and cement could significantly decrease the lead leaching in the solidified body,the leaching concentration of solidified body of calcium superphosphate-cement( SSPC) was far lower than that of cement, and when calcium superphosphate content was 5% and 10% respectively,the lead leaching concentration in the solidified body was far lower than limit value in Identification Standards for Hazardous Wastes( GB/T 5085. 3—2007). The results of BCR test showed that: both cement( OPC) and calcium superphosphate-cement( SSPC) could promote the transformation of Pb from the active state( weak acid extraction state) to more stable state( reducible state and residual state),but the Pb content in the residual state of calcium superphosphate-cement( SSPC) solidified body was high. On the basis of obtaining F1( weak acid state) by the improved BCR method,the ecological risk level of lead was evaluated by risk assessment coding( RAC) method,and compared with uncured soil,its ecological risk level was greatly reduced.
引文
[1]张孝飞,林玉锁,俞飞,等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512-515.
    [2] Wei B G,Yang L S. A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China[J].Microchemical Journal,2010,94(2):99-107.
    [3] Bozkurt S,Moreno L,Neretnieks I. Long-term processes in waste deposits[J]. Science of the Total Environment,2000,250(1/2/3):101-121.
    [4] USEPA. Treatment technologies for site cleanup. Annual Status Report,12th Edition,2007,EPA-542-R-07-012.
    [5]杜延军,金飞,刘松玉,等.重金属工业污染场地固化/稳定处理研究进展[J].岩土力学,2011,32(1):116-124.
    [6]张亭亭,李江山,王平,等.磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J].岩土力学,2016,37(增刊2):279-286.
    [7]赵三青.干湿循环对Pb污染土固化体力学和浸出特性的影响[J].环境工程学报,2018,12(1):220-226.
    [8]陈蕾,刘松玉,杜延军,等.水泥固化重金属铅污染土的强度特性研究[J].岩土工程学报,2010,32(12):1898-1903.
    [9]陈蕾,杜延军,刘松玉,等.水泥固化铅污染土的基本应力-应变特性研究[J].岩土力学,2011,32(3):715-721.
    [10] Al-TABBAA A, PERERA A S R. Stabilisation/solidification treatment and remediation. Part II:binders and technologiesresearch[C]//Proceedings of theInternational Conference on Stabilisation/Solidification Treatment and Remediation. London:Balkema,2005:387-397.
    [11]孙道胜,孙鹏,王爱国,等.磷酸镁水泥的研究与发展前景[J].材料导报,2013,27(9):70-75.
    [12] Chen M,Ma L Q,Singh S P,et al. Field demonstration of in situ immobilization of soil Pb using P amendments[J]. Advances in Environmental Research,2003,8(1):93-102.
    [13] Hettiarachchi G M,Pierzynski G M,Ransom M D. In situ stabilization of soil lead using phosphorus and manganese oxide[J].Environmental Science&Technology,2000,34:4614-4619.
    [14] Theodoratos P,Papassiopi N,Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of:heavy metals in contaminated soils from Lavrion[J]. Jounral of Hazardous Materials,2002,B94:135-146.
    [15] Perera A S R,Al-Tabbaa A,Reid J M. Testing and performance criteria[M]//Stabilisation/Solidification Treatment and Remediation Advances in S/S for Waste and Contaminated Land.Florida:CRC Press,2005:415-435.
    [16] Malone P G,Jones L W,Larson R J. Guide to the Disposal of Chemically Stabilized and Solidified Wastes[R]. Washington DC:USEPA,1980.
    [17]海米提·依米提,祖皮艳木·买买提,李建涛,等.焉耆盆地土壤重金属的污染及潜在生态风险评价[J].中国环境科学,2014,34(6):1523-1530.
    [18]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.
    [19]汤波,赵晓光,冯海涛,等.陕南某铅锌尾矿区土壤重金属迁移性及生态风险评价[J].江苏农业科学,2016,44(5):465-468.
    [20]张亭亭,李江山,王平,等.磷酸镁水泥固化铅污染土的应力—应变特性研究[J].岩土力学,2016,37(增刊1):215-225.
    [21]魏明俐,伍浩良,杜延军,等.冻融循环下含磷材料固化锌铅污染土的强度及溶出特性研究[J].岩土力学,2015,36(增刊1):215-219.
    [22]李江山,王平,张亭亭,等.酸溶液淋溶作用下重金属污染土固化体浸出特性及机理[J].岩土工程学报,2017,39(增刊1):135-139.
    [23]王碧玲,谢正苗,孙叶芳,等.磷肥对铅锌矿污染土壤中铅毒的修复作用[J].环境科学学报,2005(9):1189-1194.
    [24]南京水利科学研究院. GB/T 50123—1999土工试验方法标准[S].北京:中国计划出版社,1999.
    [25]廖晓勇,崇忠义,阎秀兰,等.城市工业污染场地:中国环境修复领域的新课题[J].环境科学,2011,32(3):784-794.
    [26] Boardman D I. Lime stabilisation:clay-metal-lime interactions[D]. Loughborough University,1999.
    [27] Office of Solid Waste and Emergency Response,USEPA. Test methods for Evaluation of Solid Wastes,Physical Chemical Methods:Toxicity Characteristic Leaching Procedure(method1311)[S]. Washington D C:USEPA,1992
    [28] Rauret G,López-Sánchez J F,Sahuquillo A,et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring Jem,1999,1(1):57.
    [29]中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T50123—1999[S].北京,1999
    [30] Singh K P,Mohan D,Singh V K,et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges,India[J]. Journal of Hydrology,2005,312(1):14-27.
    [31] Liu H, Li L, Yin C, et al. Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake[J].环境科学学报(英文版),2008,20(4):390-397.
    [32]李如忠,姜艳敏,潘成荣,等.典型有色金属矿山城市小河流沉积物重金属形态分布及风险评估[J].环境科学,2013,34(3):1067-1075.
    [33] Guillén M T, Delgado J, Albanese S, et al. Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township(SW Iberian Peninsula)[J]. Journal of Geochemical Exploration,2012,119/120(6):32-43.
    [34]建筑地基基础设计规范:GB 50007—2002[S].
    [35] Delage P,Marcial D,Cui Y J,et al. Ageing effects in a compacted bentonite:a microstructure approach[J]. Geotechnique,2006,56(5):291-304.
    [36]中华人民共和国国家标准编写组. GB/T 5085. 3—2007危险废物鉴别标准浸出毒性鉴别[S].
    [37]杜延军,蒋宁俊,王乐,等.水泥固化锌污染高岭土强度及微观特性研究[J].岩土工程学报,2012,34(11):2114-2120.
    [38]查甫生,刘晶晶,许龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252.
    [39] Li J S,Xue Q,Wang P,et al. Comparison of solidification/stabilization of lead contaminated soil between magnesia-phos-phate cement and ordinary portland cement under the same dosage[J].Environmental Progress&Sustainable Energy,2016,35(1):88-94
    [40] Basta N T,Mcgowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smeltercontaminated soil[J]. Environmental Pollution,2004,127(1):73-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700