用户名: 密码: 验证码:
基于ANSYS的高温熔盐泵应力分析与结构优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress analysis and structural analysis and optimization of high temperature molten salt pump in TMSR-SF0 based on ANSYS
  • 作者:樊辉青 ; 林良程 ; 蔡茂源 ; 黄超 ; 张小春 ; 傅远
  • 英文作者:FAN Huiqing;LIN Liangcheng;CAI Maoyuan;HUANG Chaochao;ZHANG Xiaochun;FU Yuan;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 关键词:钍基熔盐仿真堆 ; 高温熔盐泵 ; 结构优化 ; ASME-HCB ; 完整性评定
  • 英文关键词:TMSR-SF0;;High temperature molten salt pump;;Structure optimization;;ASME-HCB;;Integrity assessment
  • 中文刊名:核技术
  • 英文刊名:Nuclear Techniques
  • 机构:中国科学院上海应用物理研究所;
  • 出版日期:2019-09-10
  • 出版单位:核技术
  • 年:2019
  • 期:09
  • 语种:中文;
  • 页:90-96
  • 页数:7
  • CN:31-1342/TL
  • ISSN:0253-3219
  • 分类号:TL426
摘要
高温熔盐泵是钍基熔盐仿真堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF0)一回路系统的关键设备,设计温度高达700°C,其结构完整性对反应堆安全运行至关重要。针对TMSR-SF0高温熔盐泵泵罐初始平封头设计方案应力过大问题,提出了三角形、单井形及双井形三种筋板优化方案,研究了筋板间距对双井方案泵罐应力的影响,制定了泵罐的最终设计方案,按照美国机械工程师协会(American Society of Mechanical Engineers,ASME)标准第III卷第5册对其进行了评定。结果表明:三种方案均可大幅降低泵罐应力水平,双井方案最优,单井方案次之,三角形方案最差;泵罐最终设计方案为双井方案,此方案可使泵罐应力由413.4 MPa下降至65.4 MPa,应力降幅高达84.2%,并通过了ASME标准评定。
        [Background] High temperature molten salt pump, the design temperature can go up to 700 °C, is one of the key equipment in the primary loop in the simulator of Thorium-based Molten Salt Reactor with Solid Fuel(TMSR-SF0). The structural integrity of the pump is crucial to the safe operation of the reactor. [Purpose] This study aims to reduce the load-controlled stress level of the molten salt pump tank of TMSR-SF0 to meet the evaluation requirements of American Society of Mechanical Engineers(ASME) BPV code. [Methods] Three different schemes of the reinforcing rib for the bottom flat head including triangular shape, #-shape, and dual-#-shape were proposed and analyzed to optimize the initial tank design. The influence of the reinforcing rib spacing on the stress of pump tank in the dual-# scheme had been studied, and the optimal combination of parameters was found. According to the results of above analyses, the final tank design scheme was obtained, and then evaluated in accordance with ASME BPV code section III, Division 5. [Results] The results show that all of the three schemes can significantly reduce the stress level of the pump tank, dual-#-shape scheme was the best, and then followed by the #-shape scheme and triangular shape scheme. [Conclusions] The final reinforcing rib design scheme for the bottom flat head of the pump tank is a dual-# scheme, which can reduce its stress from 413.4 MPa to 65.4 MPa, with a drop of 84.2%, and meet the stress assessment limit of ASME standard.
引文
1 Wang X Y,Wang X,Zhang X C,et al.Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov-Rabotnov creep damage model[J].Nuclear Science and Techniques,2019,30:65.DOI:10.1007/s41365-019-0586-2.
    2 ASME boiler and pressure vessel code,Section III,Division 5,high temperature reactors[S].ASMEBoiler and Pressure Vessel Committee,New York,the American Society of Mechanical Engineers,2017.
    3盛选禹,雒晓卫,傅激扬.反应堆主泵抗震强度的三维实体模型计算[J].核动力工程,2005,26(5):471-474.SHENG Xuanyu,LUO Xiaowei,FU Jiyang.Aseismatic strength analysis of main nuclear reactor pump based on real three dimension model[J].Nuclear Power Engineering,2005,26(5):471-474.
    4周文霞,张继革,王德忠.核电厂主泵机组抗震响应谱分析及应力评定[J].原子能科学技术,2011,45(1):54-59.ZHOU Wenxia,ZHANG Jige,WANG Dezhong.Analysis and assessment on seismic response of reactor coolant puma in nuclear power plant[J].Atomic Energy Science and Technology,2011,45(1):54-59.
    5周文建,陈宏,闻邦椿.核电站反应堆冷却剂泵的地震响应分析[J].振动与冲击,2006,25(1):32-35.ZHOU Wenjian,CHEN Hong,WEN Bangchun.Seismic response analysis of reactor coolant pump in nuclear power plant[J].Journal of Vibration and Shock,2006,25(1):32-35.
    6马辉,周文建,闻邦椿.核电站反应堆冷却剂泵的模态分析[J].机械制造,2006,10:14-17.MA Hui,ZHOU Wenjian,WEN Bangchun.Model analysis of reactor coolant pump in nuclear power plant[J].Machinery,2006,10:14-17.
    7毛飞,闵鹏,周肖佳,等.核主泵电机抗震分析[J].地震工程与工程振动,2012,32(5):55-59.MAO Fei,MIN Peng,ZHOU Xiaojia,et al.Anti-sesmic analysis for nuclear main pump motor[J].Journal of Earthquake Engineering and Engineering Vibration,2012,32(5):55-59.
    8龚玮,张小春,王晓,等.钍基熔盐堆回路管道系统应力分析与评定[J].核动力工程,2015,36(5):152-155.DOI:10.13832/j.jnpe.2015.05.0152.GONG Wei,ZHANG Xiaochun,WANG Xiao,et al.Stress analysis and structural integrity evaluation of piping system in TMSR[J].Nuclear Power Engineering,2015,36(5):152-155.DOI:10.13832/j.jnpe.2015.05.0152.
    9王海涛,吴莘馨.高温气冷堆主蒸汽隔离阀高温蠕变疲劳特性研究[J].核动力工程,2011,32(S1):18-21.WANG Haitao,WU Xinxin.Research on creep and fatigue characteristics of MSIV at elevated temperature in HTR[J].Nuclear Power Engineering,2011,32(S1):18-21.
    10 ASME boiler and pressure vessel code,Section II,Part D,properties(metric),materials[S].ASME Boiler and Pressure Vessel Committee,New York,the American Society of Mechanical Engineers,2017.
    11 ASME boiler and pressure vessel code,Section III,Division 1,subsection NF,supports[S].ASME Boiler and Pressure Vessel Committee,New York,the American Society of Mechanical Engineers,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700