用户名: 密码: 验证码:
柠檬酸对铝胁迫下苗期黑麦草生长生理的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Citric Acid on Growth Physiology of Ryegrass Seedlings under Aluminum Stress
  • 作者:黄玉婷 ; 刘大林 ; 张卫红 ; 陈思 ; 刘歆宇
  • 英文作者:HUANG Yuting;LIU Dalin;ZHANG Weihong;CHEN Si;LIU Xinyu;College of Animal Science and Technology, Yangzhou University;
  • 关键词:柠檬酸 ; 铝胁迫 ; 多花黑麦草 ; 生长 ; 生理
  • 英文关键词:citric acid;;aluminum stress;;Italian ryegrass;;growth;;physiology
  • 中文刊名:环境科学与技术
  • 英文刊名:Environmental Science & Technology
  • 机构:扬州大学动物科学与技术学院;
  • 出版日期:2019-07-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:07
  • 基金:江苏现代农业产业技术体系建设专项资金资助(JATS(2018)314);; 现代农业(奶牛)产业技术体系建设专项资金(CARS-36);; 科技基础资源调查专项(2017FY100603)
  • 语种:中文;
  • 页:50-56
  • 页数:7
  • CN:42-1245/X
  • ISSN:1003-6504
  • 分类号:X173
摘要
该研究以多花黑麦草"普通四倍体"为供体材料,采用砂培盆栽法,探究不同浓度柠檬酸(0,0.8,1.5 mmol/L)对铝胁迫下多花黑麦草的若干生长和生理指标的影响,以期了解柠檬酸对铝毒害下多花黑麦草的缓解作用。研究结果显示,适宜浓度的柠檬酸(0.8 mmol/L)能促进多花黑麦草的株高和根长的伸长生长,提高地上部和地下部的自由水含量、多花黑麦草叶片中叶绿素a、叶绿素b和叶绿素a+b含量、根系和茎叶中可溶性蛋白和可溶性糖含量,以及增强了根系和茎叶中SOD、CAT和POD活力,并降低根系和叶片中MDA含量以及叶片中相对电导率,从而有效缓解铝胁迫对多花黑麦草的毒害作用。而柠檬酸浓度过高(1.5 mmol/L)则会在一定程度上对多花黑麦草若干生长和生理指标造成抑制作用。
        In order to understand the effect of citric acid on alleviating the toxic effects of aluminum stress on plants, with Italian ryegrass "normal tetraploid" as test materials, the effects of different concentrations of citric acid(0, 0.8, 1.5 mmol/L)on some growth and physiological indexes of Italian ryegrass under aluminum stress by using sand potting method were studied. The results showed that the optimum concentration of citric acid(0.8 mmol/L) could increase the plant height, root length,free water content of the aboveground and underground parts, content of chlorophyll a, chlorophyll b and chlorophyll a+b in leaves, soluble protein, soluble sugar content as well as the activity of SOD, CAT and POD in roots, stems and leaves, while decrease the content of MDA in roots and leaves and the relative conductivity in leaves. Thereby it effectively alleviated the toxic effect of aluminum stress on Italian ryegrass. However, too high citric acid concentration(1.5 mmol/L) would inhibit the growth of ryegrass and aggravate aluminum toxicity to some extent.
引文
[1] Matsumoto H, Riechers D E, Lygin A V, et al. Aluminum Signaling and Potential Links with Safener-induced Detoxification in Plants Aluminum Stress Adaptation in Plants[M].Spring, 2015,24:1-35.
    [2] Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annual Review of Plant Biology,1995,46(1):237-260.
    [3] Schmitt M, Watanabe T, Jansen S. The effects of aluminum on plant growth in a temperate and deciduous aluminum accumulating species[J]. AoB Plants, 2016,8.
    [4] Singh S, Tripathi D K, Singh S, et al. Toxicity of aluminum on various levels of plant cells and organism:a review[J].Environmental and Experimental Botany, 2017, 137:177-193.
    [5] Nunes Nesi A, Brito D S, Inostroza Blancheteau C, et al.The complex role of mitochondrial metabolism in plant aluminum resistance[J]. Trends in Plant Science, 2014, 19(6):399-407.
    [6]沈仁芳,赵学强.酸性土壤可持续利用[J].农学学报,2019,9(3):16-20.Shen Renfang, Zhao Xueqiang. The sustainable use of acid soils[J]. Journal of Agriculture, 2019,9(3):16-20.
    [7] Poschenrieder C, GunséB, Corrales I, et al. A glance into aluminum toxicity and resistance in plants[J]. Science of the Total Environment, 2008,400(1/2/3):356-368.
    [8] Aggarwal A, Ezaki B, Tripathi B N. Two detoxification mechanisms by external malate detoxification and anti-peroxidation enzymes cooperatively confer aluminum tolerance in the roots of wheat(Triticum aestivum L.)[J]. Environmental and Experimental Botany, 2015,120:43-54.
    [9]黄玉婷,吴亚,刘大林,等.铝胁迫对草本植物生理的影响机制[J].草业科学,2018,35(6):1517-1527.Huang Yuting, Wu Ya, Liu Dalin, et al. Mechanisms underlying the effects of aluminum stress on herbaceous plant physiology[J]. Pratacultural Science, 2018,35(6):1517-1527.
    [10]吴亚,陈思,张卫红,等.多花黑麦草对铝胁迫的生长生理响应[J].植物科学学报, 2018,36(5):755-760.Wu Ya, Chen Si, Zhang Weihong, et al. Growth and physiological responses of Lolium multiflorum to aluminum stress[J]. Plant Science Journal, 2018,36(5):755-760.
    [11]刘新.植物生理学实验指导[M].北京:中国农业出版社,2015.Liu Xin. Plant Physiology Experiment Guide[M]. Beijing:China Agriculture Press, 2015.
    [12] Huang X, Shi H, Hu Z, et al. ABA is involved in regulation of cold stress response in bermudagrass[J]. Frontiers in Plant Science, 2017(8):1613.
    [13]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2003.Zou Qi. Plant Physiology Experiment Guide[M]. Beijing:China Agriculture Press, 2003.
    [14]宋超,王跃华,赵钢,等.不同酸处理对苦荞种子萌发和幼苗生长的影响[J].种子, 2015,34(8):79-82.Song Chao, Wang Yuehua, Zhao Gang, et al. Effect of soaking with different acid on seed germination and seedling growth of tartary buckwheat[J]. Seed, 2015,34(8):79-82.
    [15]孙远秀,邱爽,张伟伟,等.柠檬酸对西瓜幼苗铝毒害的缓解作用[J].核农学报, 2016,30(10):2072-2079.Sun Yuanxiu, Qiu Shuang, Zhang Weiwei, et al. Alleviating effects of citric acid on aluminum toxicity in water melon seedlings[J]. Journal of Nuclear Agricultural Science, 2016,30(10):2072-2079.
    [16]姚虹宇,刘亚敏,张盛楠,等.外源柠檬酸对铝胁迫下马尾松生理特性的影响[J].林业科学, 2018,54(7):155-164.Yao Hongyu, Liu Yamin, Zhang Shengnan, et al. Effects of exogenous citric acid on physiological characteristics of Pinus massoniana under aluminum stress[J]. Scientia Silvae Sinicae, 2018,54(7):155-164.
    [17]初晓辉,张艾青,段新慧,等.铝胁迫对多花黑麦草生长和生理的影响[J].草原与草坪, 2017,37(6):48-56.Chu Xiaohui, Zhang Aiqing, Duan Xinhui, et al. Effects of aluminum stress on growth and physiological of five cultivars of Lolium multiflorum[J]. Grassland and Turf, 2017,37(6):48-56.
    [18]高培培,章艺,吴玉环,等.外源水杨酸对铝胁迫下栝楼光合特性及耐铝性的影响[J].水土保持学报, 2012,26(6):268-273.Gao Peipei, Zhang Yi, Wu Yuhuan, et al. Effect of exogenous SA on photosynthesis and Al tolerance of Trichosanthes kirilowii maxim under aluminum stress[J]. Journal of Soil and Water Conservation, 2012,26(6):268-273.
    [19]胡雪华,李蕴,邹天才.车前对铝胁迫生理响应的研究[J].热带亚热带植物学报, 2014,22(5):495-501.Hu Xuehua, Li Yun, Zou Tiancai. Studies on physiological responses to aluminum stress of Plantago asiatica[J]. Journal of Tropical and Subtropical Botany, 2014, 22(5):495-501.
    [20]李力,刘玉民,王敏,等. 3种北美红枫对持续高温干旱胁迫的生理响应机制[J].生态学报, 2014,34(22):6471-6480.Li Li, Liu Yumin, Wang Min, et al. Physiological response mechanism of three kinds of Acer rubrum L. under continuous high temperature and drought stress[J]. Acta Ecologica Sinica, 2014,34(22):6471-6480.
    [21] Shahnaz G, Shekoofeh E, Kourosh D, et al. Interactive effects of silicon and aluminum on the malondialdehyde(MDA), proline, protein and phenolic compounds in Borago officinalis L.[J]. Journal of Medicinal Plants Research, 2011,5(24):5818-5827.
    [22]郝磊,弓丽花,黄永芳.铝胁迫对3种油茶初生根生理特性的影响[J].贵州农业科学, 2017,45(2):124-129.Hao Lei, Gong Lihua, Huang Yongfang. Effect of aluminum stress on physiological characteristics of primary roots of three oil tea species[J]. Guizhou Agricultural Science, 2017,45(2):124-129.
    [23]徐芬芬.柠檬酸对铝胁迫下大豆根系生长和生理特性的影响[J].生物加工过程, 2015,13(4):75-78.Xu Fenfen. Effects of citric acid on root growth and physiological characteristics of soybean under aluminum stress[J].Chinese Journal of Bioprocess Engineering, 2015,13(4):75-78.
    [24]王志颖,刘鹏.柠檬酸抑制剂对铝胁迫下油菜抗氧化酶活性的影响[J].江苏农业学报, 2013,29(5):957-966.Wang Zhiying, Liu Peng. Effect of citric acid inhibitor on antioxidant enzymes activities in oilseed rape leaves under aluminum stress[J]. Jiangsu Journal of Agricultural Science,2013,29(5):957-966.
    [25]陈佳,韩杰,郑佳梦,等.外源柠檬酸对铝胁迫栝楼抗氧化酶系及根尖铝积累的影响[J].贵州农业科学, 2018,46(2):120-123.Chen Jia, Han Jie, Zheng Jiameng, et al. Effects of exogenous citrate on leaf antioxidase system and root tip Al3+accumulation of Trichosanthes kirilowii seedlings under Al3+stress[J]. Guizhou Agricultural Science, 2018, 46(2):120-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700