用户名: 密码: 验证码:
露天煤矿区复垦土壤碳库研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review on Soil Carbon Sequestration in Reclaimed Opencast Coal Mine
  • 作者:席梅竹 ; 赵中秋 ; 白中科 ; 原野
  • 英文作者:XI Mei-zhu;ZHAO Zhong-qiu;BAI Zhong-ke;YUAN Ye;School of Land Sciences & Technology, China University of Geosciences;Department of Geography,Xinzhou Normal University;Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Netural Resources;
  • 关键词:露天煤矿 ; 复垦排土场 ; 土壤碳库 ; 碳库影响因素
  • 英文关键词:Opencast coal mine;;Reclamation dump;;Soil carbon pool;;Effect factors of soil carbon pool
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:中国地质大学(北京)土地科学技术学院;忻州师范学院地理系;自然资源部土地整治重点实验室;
  • 出版日期:2019-06-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:03
  • 基金:国土资源部公益性行业科研专项——典型露天煤矿复垦生物多样性恢复研究(201411017)资助
  • 语种:中文;
  • 页:250-258
  • 页数:9
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S153.6
摘要
土壤是地球陆地生态系统中碳的重要贮藏库。露天煤矿区既是"碳源",也是"碳汇",研究其土壤碳的变化对区域碳平衡具有重要意义。本文梳理了当前世界范围内对露天煤矿区土壤碳库的构成、土壤有机碳库的区分测定方法、积累、转化和时空分布的研究。已有研究成果表明:(1)复垦与未复垦排土场中土壤无机碳含量无显著差异。(2)土壤有机碳的含量受复垦植被、年限、地形及土壤理化性质的影响。(3)不同因素通过影响土壤中的矿质态氮和微生物活性而影响有机碳的分解矿化率。(4)不同类型有机碳在土壤剖面中的分布呈不同规律,生物成因有机碳主要积累在土壤表层和亚表层,而地球成因有机碳积累在土壤底层。在此基础上提出深入研究方向:土壤无机碳和有机碳的相互转化关系、土壤碳循环与氮、磷、水循环的耦合关系及与生态系统生物多样性之间的内在联系。
        Soil is an important reservoir of carbon(C) in terrestrial ecosystems. Opencast coal mine is not only a C source, but also a C sink. It is significant to study the change of soil C in the opencast coal mine for regional C balance. The fractions, measurement, accumulation, transformation and temporal-spatial distribution of soil C pools in opencast coal mine were reviewed. There was no significant difference in the content of soil inorganic C between the reclaimed mine and the un-reclaimed dump. The content of soil organic C was affected by the vegetation, time,topography and soil physicochemical properties. Different factors influenced the rates of decomposition and mineralization of soil organic C due to the changes of mineral nitrogen and microbial activity. Biogenic organic C was mainly accumulated on the topsoil and sub-surface soil, while geogenic organic C was mostly accumulated at subsoil.More attentions should be paid to the interconversion relationship between soil inorganic C and organic C, the complex coupling relation between soil C cycle and nitrogen, phosphorus and water cycles, and the internal relationship between soil C cycle and the biodiversity of ecosystem.
引文
[1]宋冰,牛书丽.全球变化与陆地生态系统碳循环研究进展[J].西南民族大学学报(自然科学版), 2016, 42(1):14-23.
    [2]郑聚锋,程琨,潘根兴.关于中国土壤碳库及固碳潜力研究的若干问题[J].科学通报, 2011, 56(26):2162-2173.
    [3] SCHIMEL D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1(1):77-91.
    [4] POST W M,EMANUEL WR, STANGENBERGER A G. Soil carbon pools and world life zones. Nature, 1982, 298(5870):156-159.
    [5]张晓华,高云,祁悦,等. IPCC第五次评估报告第一工作组主要结论对《联合国气候变化框架公约》进程的影响分析[J].气候变化研究进展, 2014, 10(1):14-19.
    [6]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4):966-975.
    [7]余健,房莉,卞正富.土壤碳库构成研究进展[J].生态学报,2014, 34(17):4829-4838.
    [8]黄元仿,张世文,张立平,等.露天煤矿土地复垦生物多样性保护与恢复研究进展[J].农业机械学报, 2015, 46(8):72-82.
    [9]李晋川,白中科.露天煤矿土地复垦与生态重建——平朔露天矿的研究与实践[M].北京:科学出版社, 2000.
    [10]王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展[J].应用生态学报, 2011, 22(4):1075-1081.
    [11]李俊超,薛江,唐骏,等.植被重建下露天煤矿排土场边坡土壤碳储量变化[J].土壤学报, 2015,(2):453-460.
    [12] ZHAOJ, DONG Y, WANG Y, et al. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China[J].Science of the Total Environment, 2014, 485-486(485):615-623.
    [13]王凯,张亮,刘锋,等.阜新露天煤矿排土场边坡土壤质量分异特征[J].中国环境科学, 2015(7):2119-2128.
    [14]胡宜刚,张鹏,赵洋,等.植被配置对黑岱沟露天煤矿区土壤养分恢复的影响[J].草业科学, 2015, 32(10):1561-1568.
    [15] ZHAO Z, SHAHROUR I, BAI Z, et al. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China[J]. European Journal of Soil Biology, 2013, 55(3):40-46.
    [16]周伟,刘孝阳,杨柯,等.复垦土地土壤有机碳空间插值方法研究——以平朔露天煤矿为例[J].煤炭学报, 2016, 41(s1):184-191.
    [17]刘孝阳,周伟,白中科,等.平朔矿区露天煤矿排土场复垦类型及微地形对土壤养分的影响[J].水土保持研究, 2016, 23(3):6-12.
    [18] KO諶ODZIEJ B, BRYK M, S諶OWI諶SKA-JURkIEWICZ A, et al. Soil physical properties of agriculturally reclaimed area after lignite mine:A case study from central Poland[J]. Soil&Tillage Research, 2016,163:54-63.
    [19] AHIRWAL J, MAITI S K, SINGH A K. Changes in ecosystem carbon pool and soil CO2flux following post-mine reclamation in dry tropical environment, India[J]. Science of the Total Environment, 2017, 583:153-162.
    [20] MUKHOPADHYAY S, MASTO R E, YADAV A, et al. Soil quality index for evaluation of reclaimed coal mine spoil[J]. Science of the Total Environment, 2016, 542(Pt A):540.
    [21] YUAN Y, ZHAO Z, ZHANG P, et al. Soil organic carbon and nitrogen pools in reclai med mine soils under forest and cropland ecosystems in the Loess Plateau, China[J]. Ecological Engineering,2017, 102:137-144.
    [22] YUAN Y, ZHAO Z, LI X, et al. Characteristics of labile organic carbon fractions in reclaimed mine soils:Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China[J].Science of the Total Environment, 2017, 613-614:1196-1206.
    [23] PIETRZYKOWSKI M, DANIELS W L. Estimation of carbon sequestration by pine(Pinus sylvestris L.)ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates[J]. Ecological Engineering, 2014, 73:209-218.
    [24] DAS R, MAITI S K. Importance of carbon fractionation for the estimation of carbon sequestration in reclaimed coalmine soils—A case study from Jharia coalfields, Jharkhand, India[J]. Ecological Engineering, 2016, 90:135-140.
    [25] Lal R. Soil carbon sequestration to mitigate climate change[J].Geoderma, 2004, 123(1-2):1-22.
    [26] VALENTINI R, MATTEUCCI G, DOLMAN A J, et al. Respiration as th e main determinant of carbon balance in European forests[J].Nature, 2000, 404(6780):861.
    [27] KOCHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon, based on the Harmonized World Soil DatabasePart 1:Masses and frequency distribution of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 2015, 1(1):351-365.
    [28] MWON L, KOGELKNABNER I, EKSCHMITT K, et al. SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology&Biochemistry, 2007, 39(9):2183-2207.
    [29] FONTAINE S, BATOT S, BARRE P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007,450(7167):277-280.
    [30] CHAN K Y, COWIE A, KELLY G, et al. Scoping Paper:Soil Organic Carbon Sequestration Potential for Agriculture in NSW[J]. 2009.
    [31] MUKHOPADHYAY, MAITI, MASTO. Development of mine soil quality index(MSQI)for evaluation of reclamation success:a chronosequence study[J]. Ecological Engineering, 2014, 71, 10-20.
    [32]张旭东,梁超,诸葛玉平,等.黑碳在土壤有机碳生物地球化学循环中的作用[J].土壤通报, 2003, 34(4):349-355.
    [33] NYAMADZAWO G, SHUKLA M K, LAL R. Spatial variability of total soil carbon and nitrogen stocks for some reclaimed mine soils of southeastern Ohio[J]. Land Degradation&Development, 2010, 19(3):275-288.
    [34]李博,王金满,王洪丹,等.煤矿区土壤有机碳含量测算与影响因素研究进展[J].土壤, 2016, 48(03):434-441.
    [35]李玲,饥少君,刘京涛,等.土壤溶解性有机碳在陆地生态系统碳循环中的作用[J].应用生态学报, 2012, 23(5):1407-1414.
    [36] ORGILL S E, CONDON J R, CONYERS M K, et al. Sensitivity of soil carbon to management and environmental factors within Australian perennial pasture systems[J]. Geoderma, 2014, s 214-215(2):70-79.
    [37] XU G, CHEN J, BERNINGER F, et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana, forest elevations under elevated temperatures[J]. Soil Biology&Biochemistry, 2015, 91:1-13.
    [38] EUSTERHUES K, RUMPEL C, KLEBER M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry,2003, 34(12):1591-1600.
    [39] USSIRI DAN, LAL R. Method for Determining Coal Carbon in the Reclaimed Minesoils Contaminated with Coal[J]. Soil Science Society of America Journal, 2008, 72(72):231-237.
    [40] CHAUDHURI S, MCDONALD L M, PENA-YEWTUKHIW E M, et al. Chemically stabilized soil organic carbon fractions in a reclaimed minesoil chronosequence:implications for soil carbon sequestration[J].Environmental Earth Sciences, 2013, 70(4):1689-1698.
    [41] WARD C R, SUAREZ-RUIZ I. Chapter 1-Introduction to Applied Coal Petrology[J]. Applied Coal Petrology, 2008:1-18.
    [42] Van KREVELEN, D.W.. Coal:Typology, Physics, Chemistry,Constitution[J]. Coal Science&Technology, 1993.
    [43] SUGGATE, R.P., DICKINSON, W.W.. Carbon NMR of coals:the effect of coal type and rank[J]. Int. J. Coal Geol. 2004, 57(1):1-22.
    [44] CROWELL D.L.. Coal. An Educational Leaflet No. 8, Ohio Division of Natural Resources. 2002.
    [45] USSIRI DAN, JACINTHE P A, LAL R. Methods for determination of coal carbon in reclaimed minesoils:A review[J]. Geoderma, 2014,214-215(2):155-167.
    [46] LAL R. Soil C sequestration impacts on global climatic change and food security[J]. Science, 2004, 304:1623-1627.
    [47]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通讯, 1999,15(5):330-332.
    [48] WU H B, GUO Z T, GAO Q O, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China.[J]. Agriculture Ecosystems&Environment, 2009, 129(4):413-421.
    [49]潘根兴.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[D].南京农业大学学报, 1999, 22(1):51-57.
    [50]许乃政,张桃林,王兴祥,等.长江三角洲地区土壤有机碳库研究[J].长江流域资源与环境, 2010, 19(7):790-796.
    [51]张林,孙向阳,曹吉鑫,等.荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移[J].干旱区地理, 2010, 33(5):732-739.
    [52]文月荣.不同植被恢复模式下煤矿排土场土壤碳库管理指数与土壤酶活性研究[D].咸阳:西北农林科技大学, 2016.
    [53]刘伟红.黄土丘陵区露天煤矿复垦土壤有机碳的变化特征及影响因素[D].北京:中国地质大学(北京), 2014.
    [54] AKALA V A, LAL R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio[J]. Journal of Environmental Quality, 2001, 30(6):2098.
    [55]丁青坡,王秋兵,韩春兰,等.矿区不同复垦年限土壤养分及有机碳特性研究——以抚顺矿区碳质页岩区复垦土壤为例[J].安徽农业科学, 2006, 34(17):4360-4363.
    [56] C. RUMPE, L.J. JANIK, J.O.SKJEMATAD,I. KOGEL-KNABNER.Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares[J]. Organic Geochemistry, 2001, 32:831-839.
    [57] RUMPEL C, BALESDENT J, GROOTES P, et al. Quantification of lignite-and vegetation-derived soil carbon using14C activity measurements in a forested chronosequence[J]. Geoderma, 2003, 112(1-2):155-166.
    [58] CHAN J, PLANTE A F, PELTRE C, et al. Quantitative differentiation of coal, char and soil organic matter in an Australian coal minesoil[J].Thermochimica Acta, 2017, 650:44-55.
    [59]张菁,江山,王改玲.安太堡露天矿不同复垦年限苜蓿地土壤养分和酶活性剖面特征[J].灌溉排水学报, 2018, 37(1):42-48.
    [60]杨彦明,刘景辉,杨汉宏,等.不同植被对黑岱沟露天煤矿复垦土壤微生物数量的影响[J].露天采矿技术, 2018, 33(1):106-109.
    [61]王杨扬,赵中秋,原野,等.黄土区露天煤矿不同复垦模式对土壤水稳性团聚体稳定性的影响[J].农业环境科学学报, 2017, 36(5):966-973.
    [62]王同智,薛焱,包玉英,等.不同复垦方式对黑岱沟露天煤矿排土场土壤有机碳的影响[J].安全与环境学报, 2014, 14(2):174-178.
    [63] YUAN Y, ZHAO Z, BAI Z, et al. Reclamation patterns vary carbon sequestration by trees and soils in an opencast coal mine, China[J].Catena, 2016, 147:404-410.
    [64] MUKHOPADHYAY S, MASTO R E, CERDA A, et al. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil[J]. Catena, 2016, 141:100-108.
    [65]王平,王金满,刘伟红.黄土丘陵区露天煤矿复垦排土场地形因子对土壤有机碳的影响[J].中国煤炭, 2015, 41(9):128-131.
    [66] VINDUSKOVA O, FROUZ J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere:a quantitative review[J]. Environmental Earth Sciences, 2013, 69(5):1685-1698.
    [67]辛芝红,李君剑,赵小娜,等.煤矿区不同复垦年限的土壤有机碳矿化和酶活性特征[J].环境科学研究, 2017, 30(10):1580-1586.
    [68]李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报, 2010, 30(5):1217-1226.
    [69]沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报, 2012, 32(2):517-527.
    [70] RUMPEL C, KOGEL-KNABNER I. The role of lignite in the carbon cycle of lignite-containing mine soils:evidence from carbon mineralisation and humic acid extractions[J]. Organic Geochemistry,2002, 33(3):393-399.
    [71]譒OURKOV魣M, FROUZ J, FETTWEIS U, et al. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov(Czech Republic)and near Cottbus(Germany)[J]. Geoderma, 2005, 129(1):73-80.
    [72]李君剑,严俊霞,李洪建.矿区不同复垦措施对土壤碳矿化和酶活性的影响[J].生态学报, 2015, 35(12):4183-4184.
    [73] FIELD C D, EVANS C D, DISE N B, et al. Long-term nitrogen deposition increases heathland carbon sequestration[J]. Science of the Total Environment, 2017, 592:426.
    [74]卢蒙.氮输入对生态系统碳—氮循环的影响:整合分析[D].上海:复旦大学, 2009:30.
    [75]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展, 2005, 20(1):101.
    [76]陈颖,刘玉学,陈重军,等.生物炭对土壤有机碳矿化的激发效应及其机理研究进展[J].应用生态学报, 2018, 29(1):314-320.
    [77] WANG Y, LI Y, YE X, et al. Profile storage of organic/inorganic carbon in soil:From forest to desert[J]. Science of the Total Environment,2010, 408:1925-1931.
    [78]荣井荣,李晨华,王玉刚,等.长期施肥对绿洲农田土壤有机碳和无机碳的影响[J].干旱区研究, 2012, 29(4):592-597.
    [79]张丽华,谢忠奎,王亚军,等.陇中黄土高原土地利用变化对土壤有机碳、无机碳的影响[J].土壤通报, 2013, 44(2):369-375.
    [80]崔丽峰,刘丛强,涂成龙,等.黄土地区不同覆被下土壤无机碳分布及同位素组成特征[J].生态学杂志, 2013, 32(5):1187-1194.
    [81] STAHL P D, WICK A F, GANJEGUNTE G, et al. Redevelopment of soil carbon pools on reclaimed surface mine lands[J]. 2009, 3:1348-1370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700