用户名: 密码: 验证码:
纳米金-铂/碳纤维复合材料的制备及其修饰电极性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of Gold-Platinum/Carbon Fiber Nanocomposite Modified Electrode and Its Electrochemical Performances
  • 作者:谢慧 ; 黄少梅 ; 曾婷 ; 李翔 ; 李玉华 ; 孙伟 ; 阮承祥
  • 英文作者:XIE Hui;HUANG Shaomei;ZENG Ting;LI Xiang;LI Yuhua;SUN Wei;RUAN Chengxiang;Key laboratory of functional material and photoelectrochemistry of Haikou,College of Chemistry and Chemical Engineering,Hainan Normal University;Jiangxi Key Laboratory of Surface Engineering,College of Materials Science and Engineering,Jiangxi Science and Technology Normal University;
  • 关键词:碳纳米纤维 ; 纳米铂 ; 纳米金 ; 化学修饰电极 ; 静电纺丝
  • 英文关键词:carbon nanofiber;;platinum nanoparticle;;gold nanoparticle;;chemical modified electrode;;electrospinning
  • 中文刊名:海南师范大学学报(自然科学版)
  • 英文刊名:Journal of Hainan Normal University(Natural Science)
  • 机构:海南师范大学化学与化工学院海口市功能材料与光电化学重点实验室;江西科技师范大学材料科学与工程学院江西省表面工程重点实验室;
  • 出版日期:2019-09-15
  • 出版单位:海南师范大学学报(自然科学版)
  • 年:2019
  • 期:03
  • 基金:海南省自然科学基金(2017CXTD007);; 海口市重点科技计划项目(2017042);; 海南省研究生创新研究项目(Hys2018-211)
  • 语种:中文;
  • 页:4-9
  • 页数:6
  • CN:46-1075/N
  • ISSN:1674-4942
  • 分类号:TB33;O646.54
摘要
通过静电纺丝法制备聚丙烯腈纤维(PANF)并高温碳化以获得碳纳米纤维(CNF),利用水热法将纳米铂(PtNPs)负载于CNF表面得到Pt/CNF复合材料,将其固定于电极表面之后进一步利用电沉积法将纳米金(AuNPs)形成于Pt/CNF表面得到修饰电极(Au/Pt/CNF/CILE)。通过扫描电镜考察复合材料的形貌结构,利用电化学方法研究修饰电极的电化学性能,求解其有效面积。结果表明CNF呈网状结构,PtNPs稳定附着在纤维表面,电沉积的AuNPs均匀分布在Pt/CNF/CILE表面,所制备的修饰电极的导电性能增强、有效面积增大且表面丰富的电活性位点促进了电子的有效转移。
        Polyacrylonitrile fiber(PANF) was prepared by electrospinning, and further transformed into carbon nanofiber(CNF) by high temperature carbonization. Then platinum nanoparticles(PtNPs) were loaded on CNF surface by hydrothermal method to obtain the Pt/CNF composite, which was immobilized on the surface of carbon ionic liquid electrode(CILE).Then gold nanoparticles(AuNPs) were formed on Pt/CNF surface by electrodeposition to construct a modified electrode(Au/Pt/CNF/CILE). The morphology of nanocomposite was characterized by SEM and the electrochemical properties of modified electrode were investigated by various electrochemical methods with the effective area measured. The results showed that CNF had a spatial network structure with PtNPs successfully loaded, and the formation of AuNPs on Pt/CNF/CILE surface resulted in the increase of the conductivity and effective area, which provided more electroactive sites for the electron transfer.
引文
[1] SAPOUNTZI E,BRAIEK M,CHATEAUX J F,et al. Recent advances in electrospun nanofiber interfaces for biosensing devices[J].Sensors,2017,17(8):1887.
    [2] BABITHA S,RACHITA L,KARTHIKEYAN K,et al. Electrospun protein nanofibers in healthcare:a review[J]. International Journal of Pharmaceutics,2017,523(1):52-90.
    [3] ZHANG B,KANG F Y,TARASCON J M,et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science,2016,76:319-380.
    [4] JI L W,ZHANG X W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithiumIon batteries[J]. Nanotechnology,2009,20(15):155705.
    [5] HUANG Z M,ZHANG Y Z,KOTAKI M,et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63(15):2223-2253.
    [6] TEO W E,RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology,2006,17(14):R89-R106.
    [7] THENMOZHI S,DHARMARAJ N,KADIRVELU K,et al. Electrospun nanofibers:new generation materials for advanced applications[J]. Materials Science and Engineering:B,2017,217:36-48.
    [8] NATARAJ S K,KIM B H,DELA CRUZ M,et al. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning[J]. Materials Letters,2009,63(2):218-220.
    [9] ZHANG X P,LIU D,YU B,et al. A novel nonenzymatic hydrogen peroxide sensor based on electrospun nitrogen-doped carbon nanoparticles-embedded carbon nanofibers film[J]. Sensors and Actuators B:Chemical,2016,224:103-109.
    [10] MONDAL K,ALI M A,AGRAWAL V V,et al. Highly sensitive biofunctionalized mesoporous electrospun TiO2nanofiber based interface for biosensing[J]. ACS Applied Materials&Interfaces,2014,6(4):2516-2527.
    [11] RANJBAR S,SHAHROKHIAN S. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus[J]. Bioelectrochemistry,2018,123:70-76.
    [12] ER E,?ELIKKAN H,ERK N. A novel electrochemical nano-platform based on graphene/platinum nanoparticles/nafion composites for the electrochemical sensing of metoprolol[J]. Sensors and Actuators B:Chemical,2017,238:779-787.
    [13] OUYANG R Z,BRAGG S A,CHAMBERS J Q,et al. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)[J]. Analytica Chimica Acta,2012,722:1-7.
    [14] DING Y,KIM Y J,ERLEBACHER J. Nanoporous gold leaf:“ancient technology”/advanced material[J]. Advanced Materials,2004,16(21):1897-1900.
    [15]孙伟,王丹,张媛媛,等.电化学沉积纳米金和石墨烯修饰离子液体碳糊电极检测芦丁的研究[J].分析化学,2013,41(5):709-713.
    [16] OLDHAM K. Analytical expressions for the reversible Randles-Sevcik function[J]. Journal of Electroanalytical Chemistry,1979,105(2):373-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700