用户名: 密码: 验证码:
层状热电材料SrAl_2Ge_2的制备与性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the preparation and thermoelectric properties of layered SrAl_2Ge_2
  • 作者:史晓曼 ; 陈龙庆 ; 何欢 ; 孙奕翔 ; 曾珠 ; 唐军
  • 英文作者:SHI Xiao-Man;CHEN Long-Qing;HE Huan;SUN Yi-Xiang;ZENG Zhu;TANG Jun;Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University;Data & Information Room, Military Region of Sichuan Province;
  • 关键词:热电材料 ; SrAl_2Ge_2单晶 ; 变温电阻率 ; 比热
  • 英文关键词:Thermoelectrics;;SrAl_2Ge_2 single crystal;;Variable temperature resistivity;;Heat capacity
  • 中文刊名:四川大学学报(自然科学版)
  • 英文刊名:Journal of Sichuan University(Natural Science Edition)
  • 机构:四川大学原子核科学技术研究所教育部辐射物理与技术重点实验室;四川省军区数据信息室;
  • 出版日期:2019-09-20 11:55
  • 出版单位:四川大学学报(自然科学版)
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金(11274234)
  • 语种:中文;
  • 页:161-165
  • 页数:5
  • CN:51-1595/N
  • ISSN:0490-6756
  • 分类号:O614.232;TB34
摘要
以Ⅱ、Ⅲ和Ⅳ族元素为主的笼状物热电材料研究近年来发展迅速,尤其是在优值系数ZT值上取得了重大突破,而从Sr-Al-Ge笼状物体系中获得的层状结构热电材料却鲜有人关注.本研究利用铝元素作为助溶剂,在1150℃下成功合成了层状SrAl_2Ge_2单晶.采用X射线衍射仪对样品粉末进行表征,通过Rietveld精修证明该晶体具有CaAl_2Si_2结构(空间群为P3-m1,晶胞参数a=b=4.2339(1)?,c=7.4809(0)?).变温电阻率测试发现单晶样品沿c轴方向具有p型半导体行为,此外其在2~300 K低温下的比热(C_p)数据符合德拜模型.本研究结果对于开发新型无毒、高性能热电材料具有一定参考价值.
        Ⅱ,Ⅲ and Ⅳ groups were widely investigated to synthesize guest-host thermoelectric compounds in order to obtain high optimal ZT value materials. While a novel layered structure was less reported for Sr-Al-Ge system. In this study, SrAl_2Ge_2 single crystal was grown by aluminum flux at 1150 ℃ and characterized by powder X-ray methods. It is isotropic and crystallize in the CaAl_2Si_2-type structure through the Rietveld refinement method(space group P3-m1) with the lattice constants a=b=4.2339(1)?, c=7.4809(0) ?. Temperature-depended resistivity on single crystals along the c-axis shows p-type semiconducting behavior. Heat capacity(C_p) was measured in 2~300 K and low temperature C_p was consistent with data calculated by using Debye model. This work opens up a novel avenue for seeking and designing environment-friendly and high-performance thermoelectric materials.
引文
[1] Bell L E.Cooling,heating,generating power,and recovering waste heat with thermoelectric systems [J].Science,2008,321:1457.
    [2] Snyder G J,Toberer E S.Complex thermoelectric materials [J].Nature Mater,2008,7:105.
    [3] Takabatake T,Suekuni K,Nakayama T,et al.Phonon-glass electron-crystal thermoelectric clathrates:experiments and theory [J].Rev Mod Phys,2014,86:699.
    [4] Christensen M,Johnsen S,Iversen B B.Thermoelectric clathrates of type I [J].Dalton Trans,2010,39:978.
    [5] 王冰,陈顺礼,杨吉军,等.笼状热电材料p型和n型Ba8Ga16Ge30单晶之间载流子的协调研究 [J].四川大学学报:自然科学版,2016,53:361.
    [6] Slack G A.New materials and performance limits for thermoelectric cooling [M].Boca Raton:CRC Press,FL,1995.
    [7] Qiu L Y,Swainson I P,Nolas G S,et al.Structure,thermal,and transport properties of the clathrates Sr8Zn8Ge38,Sr8Ga16Ge30,and Ba8Ga16Si30 [J].Phys Rev B,2004,70:035208.
    [8] Christensen M,Iversen B B.Host structure engineering in thermoelectric clathrates [J].Chem Mater,2007,19:4896.
    [9] Christensen M,Johnsen S,S?ndergaard M,et al.Fast preparation and characterization of quarternary thermoelectric clathrates [J].Chem Mater,2009,21:122.
    [10] Sales B C,Chakoumakos B C,Jin R,et al.Structural,magnetic,thermal,and transport properties of X8Ga16Ge30 (X = Eu,Sr,Ba) single crystals [J].Phys Rev B,2001,63:245113.
    [11] Gou W P,Li Y,Chi J,et al.NMR study of slow atomic motion in Sr8Ga16Ge30 clathrate [J].Phys Rev B,2005,71:174307.
    [12] Chakoumakos B C,Sales B C,Mandrus D G,et al.Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30 [J].J Alloy Comp,2000,296:80.
    [13] Imai M,Abe H,Yamada K.Electrical properties of single-crystalline CaAl2Si2 [J].Inorg Chem,2004,43:5186.
    [14] Khatun M,Stoyko S S,Mar A.Quaternary arsenides AM1.5Tt0.5As2 (A=Na,K,Rb;M=Zn,Cd;Tt=Si,Ge,Sn):size effects in CaAl2Si2- and ThCr2Si2-type structures [J].Inorg Chem,2013,52:3148.
    [15] Canfield P C,Fisk Z.Growth of single crystals from metallic fluxes [J].Philos Mag B,1992,65:1117.
    [16] Zheng C,Hoffmann R,Nesper R.Site preferences and bond length differences in CaA12Si2-type Zintl compounds [J].J Am Chem Soc,1986,108:1876.
    [17] Burdett J K,Miller G J.Fragment formalism in main-group solids:applications to aluminum boride (AlB2),calcium aluminum silicide (CaAl2Si2),barium-aluminum (BaAl4),and related materials [J].Chem Mater,1990,2:12.
    [18] Kauzlarich S M,Condron C L,Wassei J K,et al.Structure and high-temperature thermoelectric properties of SrAl2Si2 [J].J Solid State Chem,2009,182:240.
    [19] Wu J Z,Akagi K,Xu J T,et al.Unification of the low-energy excitation peaks in the heat capacity that appears in clathrates [J].Phys Rev B,2016,93:094303.
    [20] Xu J T,Heguri S,Tanabe Y,et al.Heat capacity studies on rattling vibrations in Ba-TM-Ge type I clathrates [J].J Phys Chem Solids,2012,73:1521.
    [21] Xu J T,Tang J,Rachi T,et al.Low-temperature heat capacity of Sr8Ga16Ge30 and Ba8Ga16Ge30:tunneling states and electron-phonon interaction in clathrates [J].Phys Rev B,2010,82:085206.
    [22] Tang J,Rachi T,Kumashiro R,et al.Energetics of endohedral atoms in type-I clathrates observed by soft X-ray spectroscopy [J].Phys Rev B,2008,78:085203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700