用户名: 密码: 验证码:
基于ZrO_2/TiO_2催化H_2O_2氧化低温脱硝的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on low temperature H_2O_2 oxidative denitrification over ZrO_2/TiO_2 catalyst
  • 作者:周锦晖 ; 王琦 ; 刘丁嘉 ; 崔敏姝 ; 陆强 ; 庄柯 ; 杨勇平
  • 英文作者:ZHOU Jinhui;WANG Qi;LIU Dingjia;CUI Minshu;LU Qiang;ZHUANG Ke;YANG Yongping;State Power Environmental Protection Research Institute;National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University;
  • 关键词:H_2O_2 ; NO氧化 ; ZrO_2/TiO_2 ; 低温脱硝
  • 英文关键词:H_2O_2;;NO oxidation;;ZrO_2/TiO_2;;low temperature denitrification
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:国电环境保护研究院;华北电力大学生物质发电成套设备国家工程实验室;
  • 出版日期:2018-08-27 15:35
  • 出版单位:环境科学学报
  • 年:2019
  • 期:02
  • 基金:国家重点基础研究发展计划“973”计划(No.2015CB251501);; 北京市科技新星计划(No.Z171100001117064);; 霍英东教育基金会项目(No.161051)
  • 语种:中文;
  • 页:326-334
  • 页数:9
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X701
摘要
以纳米TiO_2为载体,采用等体积浸渍法掺杂过渡金属氧化物ZrO_2进行改性,制备了一系列ZrO_2/TiO_2催化剂,以催化H_2O_2低温氧化NO脱硝,并采用X射线衍射(XRD)、H_2程序升温还原(H_2-TPR)、O_2程序升温氧化(O_2-TPO)、X射线光电子能谱(XPS)及电子顺磁共振(EPR)等表征分析探究了影响H_2O_2脱硝活性的因素.表征结果表明ZrO_2的负载量会影响催化剂中晶格氧的含量,晶格氧相对含量的增加有利于氧化还原反应中的电子传递,这是促进H_2O_2活化分解的关键.在微观表征的基础上,通过实验研究筛选获得了催化剂的最佳ZrO_2负载量,同时对比考察了非催化和纳米TiO_2催化作用下的H_2O_2氧化低温脱硝性能;针对获取的最优催化剂,进一步考察了不同烟气工况对催化剂活性的影响.实验结果表明,ZrO_2/TiO_2催化剂能有效促进H_2O_2的活化分解实现低温脱硝,且ZrO_2负载量为4%(质量分数)时,催化活性最高;在烟温为160℃、[H_2O_2]/[NO]物质的量比为2及空速为30000 h~(-1)时,NO转化率最高可达81%.
        A series of ZrO_2/TiO_2 catalysts were prepared by incipient wetness impregnation method to catalyze the low-temperature oxidation denitrification by H_2O_2. The characterization analyses of X-ray diffraction(XRD), H_2-temperature programmed reduction(H_2-TPR), O_2-temperature programmed oxidation(O_2-TPO), X-ray photoelectron spectroscopy(XPS) and electron paramagnetic resonance(EPR) were performed to explore the factors affecting the denitrification activity of H_2O_2. The characterization results showed ZrO_2 loading will affect the content of the lattice oxygen in the catalyst. The increase of lattice oxygen relative content is beneficial to the electron transfer during redox reaction, which is the key to promote the decomposition of H_2O_2. The optimum ZrO_2 loading of the catalyst was obtained by experimental research. And the performance of ZrO_2/TiO_2 catalyzed H_2O_2 oxidative denitrification was compared with that of non-catalytic and nano-TiO_2. The effect of flue gas conditions on the catalyst activity was further investigated. The results showed that ZrO_2/TiO_2 catalyst could effectively promote the decomposition of H_2O_2 to realize low temperature denitrification. The best catalytic performance was obtained at ZrO_2 loading of 4%. Under the flue gas temperature of 160 ℃, [H_2O_2]/[NO] molar ratio of 2 and space velocity of 30000 h~(-1), the NO conversion reached as high as 81%.
引文
Cahill A E, Taube H. 1952. The use of heavy oxygen in the study of reactions of hydrogen peroxide[J]. Journal of the American Chemical Society, 74(9):2312-2318
    Casuscelli S G, Eimer G A, Canepa A, et al. 2008. Ti-MCM-41 as catalyst for α-pinene oxidation: Study of the effect of Ti content and H2O2 addition on activity and selectivity[J]. Catalysis Today, 133(11):678-683
    Ding J, Zhong Q, Zhang S L. 2014a.Simultaneous removal of NOx and SO2 with H2O2 over Fe based catalysts at low temperature[J]. RSC advances, 4(11): 5394-5398
    Ding J, Zhong Q, Zhang S L, et al. 2014b. Simultaneous removal of NOx and SO2 from coal-fired fue gas by catalytic oxidation-removal process with H2O2[J].Chemical Engineering Journal, 243(5): 176-182
    Ding J, Zhong Q, Zhang S L, et al. 2015. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOx and SO2 removal with hydrogen peroxide[J]. Journal of Hazardous Materials, 283: 633-642
    冯勇, 吴德礼, 马鲁铭. 2013.铁氧化物催化类Fenton反应[J]. 化学进展, 25(7):1219-1228
    Guillemot F, Porte M C, Labrugère C, et al. 2002. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications[J]. Journal of colloid and interface Science, 255(1): 75-78
    Hiroki A, Laverne J A. 2005. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces[J]. Journal of Physical Chemistry B, 109(8):3364-3370
    Huang X M, Ding J, Zhong G Q. 2015. Catalutic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of NOx and SO2[J].Applied Surface Science, 326: 66-72
    Hwang J, Rao R R, Giordano L, et al. 2017. Perovskites in catalysis and electrocatalysis[J]. Science, 358(6364): 751-756
    姜烨, 高翔, 吴卫红,等. 2013. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报, 33(14):18-31
    李春雨. 2015. 我国火电厂SCR烟气脱硝技术研究及应用综述[J].能源环境保护, 29(5):8-12
    Li J, Zeng H C. 2007. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening[J]. Journal of the American Chemical Society, 129(51): 15839-15847
    Linsebigler A L, Lu G Q, Yates J T. 1995. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J]. Chemical Reviews, 95(3):735-758
    Lousada C M, Johansson A J, Brinck T, et al. 2012. Mechanism of H2O2 decomposition on transition metal oxide surfaces[J]. Journal of Physical Chemistry C, 116(17):9533-9543
    Lousada C M, Jonsson M. 2010. Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2[J]. Journal of Physical Chemistry C, 114(25):11202-11208
    Mars P, Van Krevelen D W. 1954. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 3: 41-59
    Massey V, Palmer G, Ballou D P, et al. 1973. Oxidases and related redox systems[J]. by King T E, Mason H S, Morrison M, Univ. Park Press, Baltimore, 1: 25
    Matthews R W. 1984. Hydroxylation reactions induced by near UV photolysis of aqueous titanium dioxide suspensions[J]. Journal of the Chemical Society Faraday Transactions, 80(2):457-471
    Miller J B, Rankin S E, Ko E I. 1994. Strategies in controlling the homogeneity of zirconia-silica aerogels: Effect of preparation on textural and catalytic properties[J]. Journal of Catalysis, 148(2):673-682
    Min K, Park E D, Ji M K, et al. 2007. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 327(2):261-269
    Pérez-Hernández R, Mendoza-Anaya D, Fernández M E, et al. 2008. Synthesis of mixed ZrO2 -TiO2, oxides by sol-gel: Microstructural characterization and infrared spectroscopy studies of NOx[J]. Journal of Molecular Catalysis A Chemical, 281(1):200-206
    Suh M, Bagus P S, Pak S, et al. 2000. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces[J]. Journal of Physical Chemistry B, 104(12):2736-2742
    孙传智. 2011. TiO2基催化剂的制备、表征及其在环境催化中应用的基础研究[D]. 南京:南京大学
    Wang W, Lu C H, Ni Y R, et al. 2012. Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+[J]. Catalysis Communications, 22, 19-23
    王彦斌, 赵红颖, 赵国华,等. 2013. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 25(8):1246-1259
    Yang M, Jonsson M. 2015. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2[J]. Journal of Molecular Catalysis A: Chemical, 400: 49-55
    叶苗苗, 陈忠林, 沈吉敏,等. 2008. 臭氧提高纳米TiO2光催化活性的ESR分析[J]. 影像科学与光化学, 26(6):460-467
    张亚平, 郭婉秋, 王龙飞,等. 2015. V2O5-CeO2/TiO2-ZrO2催化剂表征及NH3还原NOx性能[J]. 催化学报, 36(10):1701-1710
    张亚平,王龙飞,李娟, 等. 2016. V2O5-WO3/TiO2-ZrO2脱硝催化剂中 ZrO2和 WO3的促进作用:催化性能、形态及反应机理[J].催化学报, 37(11) : 1918-1930
    Zhu H, Qin Z, Shan W, et al. 2004. Pd/CeO2 -TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents[J]. Journal of Catalysis, 225(2):267-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700