用户名: 密码: 验证码:
鄱阳湖浮游植物功能群的长期变化特征(2009-2016年)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long term dynamics of phytoplankton functional groups in Lake Poyang during 2009-2016
  • 作者:钱奎梅 ; 刘宝贵 ; 陈宇炜
  • 英文作者:QIAN Kuimei;LIU Baogui;CHEN Yuwei;College of Environmental Engineering,Xuzhou University of Technology,Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse;Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;Nanchang Institute of Technology;
  • 关键词:鄱阳湖 ; 浮游植物 ; 功能群 ; 水位波动
  • 英文关键词:Lake Poyang;;phytoplankton;;functional group;;water level fluctuation
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:徐州工程学院环境工程学院江苏省工业污染控制及资源化重点实验室;中国科学院南京地理与湖泊研究所;南昌工程学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31600345);; 徐州工程学院校级课题(XKY2016232)联合资助
  • 语种:中文;
  • 页:147-156
  • 页数:10
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X524
摘要
鄱阳湖是中国最大的淡水湖,每年都有剧烈的季节性水位变化.为了解鄱阳湖浮游植物功能群特征及其与环境因子的关系,2009-2016年每季度在鄱阳湖15个采样点采集水样,分析鄱阳湖的水质和浮游植物群落结构,并对浮游植物进行功能群划分.研究结果表明,鄱阳湖共检出浮游植物8门106属. 2009-2016年平均生物量分别为0.044、0.252、0.335、6.379、3.945、2.912、3.562和1.550 mg/L.硅藻门为鄱阳湖浮游植物的优势门类.鄱阳湖浮游植物可划分为27个功能群,其中15个功能群(C、D、G、H1、J、Lo、M、MP、N、P、S1、Tc、Wo、W1和Y)为优势功能群. 2009-2011年,功能群P、Y、MP、D为优势类群,2012-2016年,功能群P、Y、MP、H1、Lo为优势类群.鄱阳湖浮游植物优势功能群不同水文阶段的演替规律为:枯水期P、MP、Y、Lo、D,涨水期P、Y、D、MP、H1,丰水期P、Y、D、MP、Lo、H1,退水期P、Y、MP、G. RDA分析结果显示,水位变化、水温、透明度、电导率、悬浮物浓度和亚硝态氮浓度是影响鄱阳湖浮游植物功能群的主要环境因子.
        Lake Poyang is the largest freshwater lake in the Yangtze floodplain in China,with dramatic seasonal water level changes each year. The objective of the paper is to show the characteristics of phytoplankton functional groups and their relationship with environmental factors. Samples of water quality and phytoplankton were quarterly taken and analyzed at 15 sampling stations of Lake Poyang from 2009 to 2016. The phytoplankton function groups of phytoplankton were analyzed. The phytoplankton community structure and functional group characteristics of Lake Poyang were analyzed from 2009 to 2016. The results show that the phytoplankton in Lake Poyang can be divided into 27 functional groups,15 of which( C,D,G,H1,J,Lo,M,MP,N,P,S1,Tc,Wo,W1 and Y) are dominant. Functional groups P,Y,MP,and D were dominant in 2009 to 2011. Functional groups P,Y,MP,H1,and Lo were dominant in 2012 to 2016. The successional routine of dominant phytoplankton functional groups in different phases are P,MP,Y,Lo,D in low water level phases,P,Y,D,MP,H1 in increasing water level phases,P,Y,D,MP,Lo,H1 in high water level phases and P,Y,MP,G in decreasing water level phases. RDA results showed that water level changes,water temperature,transparency,conductivity,suspended solids and nitrite are the most important environmental factors of phytoplankton functional groups in Lake Poyang.
引文
[1] Reynolds CS. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia,1998,369/370:11-26.
    [2] Reynolds CS,Huszar V,Kruk C et al. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research,2002,24(5):417-428.
    [3] Hu R,Lan YQ,Xiao LJ et al. The concepts,classification and application of freshwater phytoplankton functional groups. J Lake Sci,2015,27(1):11-23. DOI:10.18307/2015.0102.[胡韧,蓝于倩,肖利娟等.淡水浮游植物功能群的概念、划分方法和应用.湖泊科学,2015,27(1):11-23.]
    [4] Padisák J,Crossetti LO,Naselli-Flores L. Use and misuse in the application of the phytoplankton functional classification:a critical review with updates. Hydrobiologia,2009,621(1):1-19.
    [5] Xiao LJ,Zhu Y,Yang Y et al. Species-based classification reveals spatial processes of phytoplankton meta-communities better than functional group approaches:A case study from three freshwater lake regions in China. Hydrobiologia,2018,811(1):313-324.
    [6] Santana LM,Crossetti LO,Ferragut C. Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Brazilian Journal of Botany,2017,40(3):695-704.
    [7] Yang Y,Pettersson K,Padisák J. Repetitive baselines of phytoplankton succession in an unstably stratified temperate lake(Lake Erken,Sweden):a long-term analysis. Hydrobiologia,2016,764(1):211-227.
    [8] Saigo M,Zilli FL,Marchese MR et al. Trophic level,food chain length and omnivory in the ParanáRiver:A food web model approach in a floodplain river system. Ecological Research,2015,30(5):843-852.
    [9] Devercelli M,Scarabotti P,Mayora G et al. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the ParanáRiver floodplain. Hydrobiologia,2016,764(1):139-156.
    [10] O'Farrell I,Chaparro G,Unrein F et al. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state:a long-term study in a floodplain lake. Aquatic Sciences,2011,73(2):275-287.
    [11] Coops H,Beklioglu M,Crisman TL. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions.Hydrobiologia,2003,506:23-27.
    [12] Mihaljevic'M,poljaric'D,Stevic'F et al. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake:Shift to a clear state. Limnologica,2010,40:260-268.
    [13] Rodrigues LC,Simes NR,Bovo-Scomparin VM et al. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecological Indicators,2015,48:334-341.
    [14] Bortolini JC,Train S,Rodrigues LC. Extreme hydrological periods:effects on phytoplankton variability and persistence in a subtropical floodplain. Hydrobiologia,2016,763:223-236.
    [15] Wang XL,Zhang M,Yin J. Composition and influential factors of phytoplankton function groups in Lake Chaohu. J Lake Sci,2018,30(2):431-440. DOI:10.18307/2018.0214.[王徐林,张民,殷进.巢湖浮游藻类功能群的组成特性及其影响因素.湖泊科学,2018,30(2):431-440.]
    [16] Dong J,Li GB,Song LR. Historical changes of phytoplankton functional groups in Lake Fuxian,Lake Erhai and Lake Dianchi since 1960s. J Lake Sci,2014,26(5):735-742. DOI:10.18307/2014.0511.[董静,李根保,宋立荣.抚仙湖、洱海、滇池浮游藻类功能群1960s以来演变特征.湖泊科学,2014,26(5):735-742.]
    [17] Wang X,Li LQ,Zheng BH et al. Composition and influential factors of algal functon groups in Dongting Lake. China Environmental Science,2016,36(12):3766-3776.[汪星,李利强,郑丙辉等.洞庭湖浮游藻类功能群的组成特征及其影响因素研究.中国环境科学,2016,36(12):3766-3776.]
    [18] Utermhl H. Zur Vervollkomnung der quantitativen phytoplankton-methodik. Mitt int Ver ther angew Limnol,1958,9:1-38.
    [19] APHA(American Public Health Association). Standard methods for the examination of water and waste water,20th ed.Washington D.C:American Public Health Association,1998.
    [20] Wu Z,Cai Y,Liu X et al. Temporal and spatial variability of phytoplankton in Lake Poyang,the largest freshwater lake in China. Journal of Great Lakes Research,2013,39:476-483.
    [21] Qian KM,Liu X,Duan M et al. Distribution and its influencing factors of bloom-forming cyanobacteria in Lake Poyang.China Environmental Science,2016,36(1):261-267.[钱奎梅,刘霞,段明等.鄱阳湖蓝藻分布及其影响因素分析.中国环境科学,2016,36(1):261-267.]
    [22] Schmidt A. Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube.Hydrobiologia,1994,289:97-108.
    [23] Qian K,Liu X,Chen Y. Effects of water level fluctuation on phytoplankton succession inLake Poyang,China-A five year study. Ecohydrology&Hydrobiology,2016,16(3):175-184.
    [24] Salmaso N,Braioni MG. Factors controlling the seasonal development and distribution of the phytoplankton community in the lowland course of a large river in Northern Italy(River Adige). Aquatic Ecology,2008,42:533-545.
    [25] Emiliani MOGD. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system(ParanáRiver,Argentina). Hydrobiologia,1997,357(1/2/3):1-15.
    [26] Unrein F. Changes in phytoplankton community along a transversal section of the Lower Paran'a floodplain,Argentina.Hydrobiologia,2002,468:123-134.
    [27] Gomes LC,Miranda LE. Hydrologic and climatic regimes limit phytoplankton biomass in reservoirs of the Upper ParanáRiver Basin,Brazil. Hydrobiologia,2001,457(1-3):205-214.
    [28] Chícharo L,Hamadou RB,Amaral A et al. Application and demonstration of the Ecohydrology approach for the sustainable functioning of the Guadiana estuary(South Portugal). Ecohydrology&Hydrobiology,2009,9(1):55-71.
    [29] Ibaez MDSR. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia,1997,362(1-3):79-83.
    [30] Qian K,Liu X,Chen Y. Effects of extreme water level changes on phytoplankton succession in Poyang Lake,China-a five year study. Ecohydrology&Hydrobiology,2016,16(3):175-184.
    [31] Liu X,Qian K,Chen Y. Effects of water level fluctuations on phytoplankton in a Changjiang River floodplain lake(Poyang Lake):Implications for dam operations. Journal of Great Lakes Research,2015,41(3):770-779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700