用户名: 密码: 验证码:
餐厨垃圾直接发酵生产生物质丁醇的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:BIO-BUTANOL PRODUCTION FROM DIRECT FERMENTATION OF KITCHEN WASTES
  • 作者:王永林 ; 高明 ; BODJUI ; Olivier ; Abo ; 王芳霞 ; 汪群慧
  • 英文作者:WANG Yong-lin;GAO Ming;BODJUI Olivier Abo;WANG Fang-xia;WANG Qun-hui;School of Energy and Environmental Engineering,University of Science and Technology Beijing;Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants;
  • 关键词:餐厨垃圾 ; 直接发酵 ; 淀粉 ; 生物质丁醇 ; Clostridium ; saccharoperbutylacetonicum
  • 英文关键词:kitchen wastes;;direct fermentation;;starch;;bio-butanol;;Clostridium saccharoperbutylacetonicum
  • 中文刊名:环境工程
  • 英文刊名:Environmental Engineering
  • 机构:北京科技大学能源与环境工程学院;北京市工业典型污染物资源化处理重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:环境工程
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(51708024);; 北京市自然科学基金项目(8182035);; 教育部重点实验室开放基金资助项目(SWMES2017-05);; 中央高校基本科研业务费资助项目(FRF-TP-16-061A1);; 中国博士后面上基金资助项目(2017M610774)
  • 语种:中文;
  • 页:140-145
  • 页数:6
  • CN:11-2097/X
  • ISSN:1000-8942
  • 分类号:X799.3
摘要
为考察餐厨垃圾不糖化直接进行产丁醇发酵的可行性,优选高效利用淀粉产丁醇梭菌Clostridium saccharoperbutylacetonicum N1-4,并发现不同来源和构型的淀粉对发酵有影响,且直链淀粉更易于被利用。餐厨垃圾直接发酵比糖化发酵效率高,且可避免底物抑制。在固液比1∶1条件下,餐厨垃圾直接发酵丁醇产量达到12. 1 g/L,丁醇碳转化率为0. 402,最大生产速率为0. 705 g/(L·h);固液比1∶2条件下,直接发酵最大生产速率是糖化发酵的2. 05倍。餐厨垃圾发酵产丁醇,可在解决环境问题的同时,为丁醇生产提供廉价原材料。
        Feasibility of direct butanol production from kitchen wastes( without enzymatic saccharification) was investigated in this study. Preferably selected and high-efficient starch was used to produce Clostridium saccharoperbutylacetonicum N1-4,and it was discovered that the starch from different sources and configurations had an influence on fermentation,and amylose was easier to be utilized. Further,direct fermentation of kitchen wastes exhibited a higher efficiency than saccharification fermentation,and could also avoid substrate inhibition,when the solid-liquid ratio( SIR) was 1 ∶ 1,12. 1 g/L butanol was produced from direct fermentation of kitchen wastes with the butanol-carbon conversion rate being 0. 402 C-mol/C-mol and the maximum butanol production rate being 0. 705 g/( L·h); when the SIR was 1 ∶ 2,the maximum butanol production rate from direct fermentation was 2. 05 times that from saccharification fermentation. Thus,the butanol produced from fermentation of kitchen wastes provided cheap raw materials for butanol production while solving the environmental problems.
引文
[1] Gu Y,Jiang Y,Wu H,et al. Economical challenges to microbial producers of butanol:Feedstock, butanol ratio and titer[J].Biotechnology Journal,2011,6(11):1348-1357.
    [2] PatákováP,LipovskJ,cíz kováH,et al. Exploitation of food feedstock and waste for production of biobutanol[J]. Czech Journal of Food Sciences,2009,27(4):276-283.
    [3]胡新军,张敏,余俊锋,等.中国餐厨垃圾处理的现状、问题和对策[J].生态学报,2012,32(14):4575-4584.
    [4] Lin C S K,Pfaltzgraff L A,Herrero-Davila L,et al. Food waste as a valuable resource for the production of chemicals,materials and fuels:current situation and global perspective[J]. Energy&Environmental Science,2013,6(2):426-464.
    [5] Gao M,Tashiro Y,Yoshida T,et al. Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using13C tracer experiments[J]. Rsc Advances,2014,5(11):8486-8495.
    [6] Ujor V,Bharathidasan A K,Cornish K,et al. Feasibility of producing butanol from industrial starchy food wastes[J]. Applied Energy,2014,136:590-598.
    [7] Madihah M S, Ariff A B, Khalil M S, et al. Anaerobic fermentation of gelatinized sago starch-derived sugars to acetone-1-butanol-ethanol solvent by Clostridium acetobutylicum[J]. Folia Microbiol(Praha),2001,46(3):197-204.
    [8] Wang Q H,Ma H Z,Xu W L,et al. Ethanol production from kitchen garbage using response surface methodology[J].Biochemical Engineering Journal,2008,39(3):604-610.
    [9] Noguchi T, Tashiro Y, Yoshida T, et al. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4[J]. Journal of Bioscience and Bioengineering,2013,116(6):716-721.
    [10] Patakova P,Linhova M,Rychtera M,et al. Novel and neglected issues of acetone-butanol-ethanol(ABE)fermentation by clostridia:Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems[J]. Biotechnology Advances,2013,31(1):58-67.
    [11] Ahmad F B,Williams P A,Doublier J L,et al. Physicochemical characterisation of sago starch[J]. Carbohydrate Polymers,1999,38(4):361-370.
    [12] Orford P D,Ring S G,Carroll V,et al. The effect of concentration and botanical source on the gelation and retrogradation of starch[J]. Journal of the Science of Food&Agriculture,1987,39(2):169-177.
    [13] Li Q,Xie Q,Yu S,et al. Application of digital image analysis method to study the gelatinization process of starch/sodium chloride solution systems[J]. Food Hydrocolloids,2014,35:392-402.
    [14] Richmond C,Han B,Ezeji T C. Stimulatory effects of calcium carbonate on butanol production by solventogenic Clostridium species[J]. Continental Journal of Microbiology,2011,5(1):18-28.
    [15] Rajagopalan G, He J, Yang K. One-pot fermentation of agricultural residues to produce butanol and hydrogen by Clostridium strain BOH3[J]. Renewable Energy,2016,85:1127-1134.
    [16] Jones D T,Woods D R. Acetone-butanol fermentation revisited[J]. Microbiol Rev,1986,50(4):484-524.
    [17] Do Prado Cordoba L,Ribeiro L S,Rosa L S,et al. Effect of enzymatic treatments on thermal, rheological and structural properties of pinho starch[J]. Thermochimica Acta,2016,642:45-51.
    [18] Zhu F. Structures,properties,and applications of lotus starches[J]. Food Hydrocolloids,2017,63:332-348.
    [19] Bogracheva T Y,Cairns P,Noel T R,et al. The effect of mutant genes at the r,rb,rug3,rug4,rug5 and lam loci on the granular structure and physico-chemical properties of pea seed starch[J].Carbohydrate Polymers,1999,39(4):303-314.
    [20] Ma H Z,Xing Y,Yu M,et al. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase[J]. Applied Energy,2014,129(C):89-93.
    [21] Fu Z,Wang L,Zou H,et al. Studies on the starch-water interactions between partially gelatinized corn starch and water during gelatinization[J]. Carbohydrate Polymers,2014,101:727-732.
    [22] Thang V H,Kanda K,Kobayashi G. Production of acetonebutanol-ethanol(ABE)in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4[J]. Applied Biochemistry and Biotechnology,2010,161(1/8):157-170.
    [23] Li X,Shi Z,Li Z. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop[J]. Bioprocess&Biosystems Engineering,2014,37(8):1609-1616.
    [24] Wehmeier U F, Piepersberg W. Biotechnology and molecular biology of theα-glucosidase inhibitor acarbose[J]. Applied Microbiology and Biotechnology,2004,63(6):613-625.
    [25] Mariano A P,Qureshi N,Filho R M,et al. Bioproduction of butanol in bioreactors:new insights from simultaneous in situ butanol recovery to eliminate product toxicity[J]. Biotechnol Bioeng,2011,108(8):1757-1765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700