用户名: 密码: 验证码:
基于高山湖泊沉积记录的贵州北部大气重金属污染历史重建
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Historical Trends of Atmospheric Trace Metal Pollution in Northern Guizhou Province as Reconstructed from Alpine Lake Sediments
  • 作者:梁梦瑶 ; 刘恩峰 ; 张恩楼 ; 纪明 ; 李小林
  • 英文作者:LIANG Meng-yao;LIU En-feng;ZHANG En-lou;JI Ming;LI Xiao-lin;Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong,College of Geography and Environment,Shandong Normal University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:重金属 ; 大气污染 ; 历史过程 ; 来源 ; 湖泊沉积物 ; 梵净山地区
  • 英文关键词:trace metals;;atmospheric pollution;;historical trends;;sources;;lake sediments;;Fanjing Mountain area
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:山东师范大学地理与环境学院人地协调与绿色发展山东省高校协同创新中心;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41672354,41271214)
  • 语种:中文;
  • 页:134-140
  • 页数:7
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X51;X524
摘要
大气重金属污染是全球面临的主要环境问题之一,受监测资料的局限,目前我国在大气重金属污染的历史过程及其对偏远地区地表环境的影响方面的研究还较为薄弱.通过对贵州北部梵净山顶沉积物中金属元素含量和Pb同位素的分析,研究了近400年来Cd、Cr、Cu、Hg、Ni、Pb和Zn等大气污染的历史过程.公元约1800年之前,沉积物中金属元素含量较为稳定; 1800年以来,Cr、Cu、Ni和Zn等含量总体呈先增加后降低的趋势;而Cd、Hg和Pb含量逐渐增加.富集系数与207Pb/206Pb结果表明,Cd、Pb和Hg是典型的大气污染元素; Hg污染开始于公元1880年前后,Cd和Pb污染开始于20世纪50年代,近年来污染程度均逐渐加重.沉积记录反映的贵州北部梵净山地区目前大气Hg污染水平与我国东部其他远离人类活动直接影响的地区相当,但远高于欧美及青藏高原等地区;不同地区间Cd与Pb污染水平具有较大的差异.梵净山地区大气Hg污染可能受到全球和区域污染排放的共同影响,Cd和Pb污染主要来自于区域有色金属冶炼及燃煤等释放.
        Atmospheric trace metal pollution is a striking environmental problem globally. Because of the limitations in monitoring data,our knowledge of the historical processes and sources of atmospheric trace metal pollution in China and its influence on remote terrestrial environmental quality is limited. The historical variations in atmospheric trace metal(Cd,Cr,Cu,Hg,Ni,Pb,and Zn)pollution during the past 400 years in the Fanjing Mountain area,northern Guizhou Province were studied by analyzing the metal concentrations and Pb isotopes in lake sediments. The results showed that concentrations of all metals in the sediments were relatively constant before 1800(A. D.). After 1800,concentrations of Cr,Cu,Ni,and Zn increased at first and then decreased,while concentrations of Hg,Cd,and Pb generally increased gradually over the most recent century and subsequent decades. The enrichment factor and ~(207)Pb/~(206)Pb analysis results indicated that Cd,Pb,and Hg were typical pollutants. Pollution of Hg began at around 1880(A.D.),and pollution of Cd and Pb has occurred since the 1950s; all pollutants exhibited aggravated trends in recent times. Pollution levels of Hg in recent years in the Fanjing Mountain area were comparable to those in other remote areas of East China,but levels were lower than those in Europe,America,and the Tibetan Plateau. In contrast,pollution levels of Cd and Pb in these areas showed large variability. By comparing the historical processes of trace metal pollution in different regions and exploring the potential pollution sources of metals in the study region,it can be deduced that atmospheric Hg pollution in the Fanjing Mountain area was the result of both global and regional emissions,while Cd and Pb pollution largely came from regional sources such as non-ferrous metals smelting and coal combustion emissions.
引文
[1] Hansson S V,Claustres A,Probst A,et al. Atmospheric and terrigenous metal accumulation over 3000 years in a French mountain catchment:Local vs distal influences[J].Anthropocene,2017,19:45-54.
    [2] Lee C S L,Li X D,Zhang G,et al. Biomonitoring of trace metals in the atmosphere using moss(Hypnum plumaeforme)in the Nanling Mountains and the Pearl River Delta,Southern China[J]. Atmospheric Environment,2005,39(3):397-407.
    [3] Dietz R, Outridge P M, Hobson K A. Anthropogenic contributions to mercury levels in present-day arctic animals—A review[J]. Science of the Total Environment,2009,407(24):6120-6131.
    [4] Streets D G,Devane M K,Lu Z F,et al. All-time releases of mercury to the atmosphere from human activities[J].Environmental Science&Technology,2011,45(24):10485-10491.
    [5] Corbitt E S,Jacob D J,Holmes C D,et al. Global sourcereceptor relationships for mercury deposition under present-day and 2050 emissions scenarios[J]. Environmental Science&Technology,2011,45(24):10477-10484.
    [6] Pacyna J M,Pacyna E G,Aas W. Changes of emissions and atmospheric deposition of mercury,lead,and cadmium[J].Atmospheric Environment,2009,43(1):117-127.
    [7] Tian H Z,Zhu C Y,Gao J J,et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:historical trend, spatial distribution,uncertainties,and control policies[J]. Atmospheric Chemistry and Physics,2015,15(17):10127-10147.
    [8] Bing H J, Wu Y H, Zhou J, et al. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century[J].Chemosphere,2016,148:211-219.
    [9] Bindler R. Contaminated lead environments of man:reviewing the lead isotopic evidence in sediments,peat,and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden[J]. Environmental Geochemistry and Health,2011,33(4):311-329.
    [10] Kang S C,Huang J,Wang F Y,et al. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau[J]. Environmental Science&Technology,2016,50(6):2859-2869.
    [11] Liu E F,Zhang E L,Li K,et al. Historical reconstruction of atmospheric lead pollution in central Yunnan province,southwest China:an analysis based on lacustrine sedimentary records[J].Environmental Science and Pollution Research,2013,20(12):8739-8750.
    [12] Feng X B,Qiu G L. Mercury pollution in Guizhou,Southwestern China—An overview[J]. Science of the Total Environment,2008,400(1-3):227-237.
    [13]孟忠常,吴迪,邓琴,等.贵州典型铅锌矿区土壤重金属污染特征与生态危害风险评价[J].贵州农业科学,2012,40(8):218-221.Meng Z C,Wu D,Deng Q,et al. Characteristics of heavy metal pollutions in soils of typical lead-zinc mining areas in Guizhou Province and the ecological risk assessment[J]. Guizhou Agricultural Science,2012,40(8):218-221.
    [14] Xie F,Tan H,Yang B,et al. The study of atmospheric transport and deposition of cadmium emitted from primitive zinc production area[J]. Water,Air,&Soil Pollution,2014,225(11):2162.
    [15]朱学书,尹努寻,杨秀丽.贵州矿产资源开发利用现状分析[J].贵州地质,2012,29(3):220-224,219.Zhu X S,Yin N X,Yang X L. Analysis on development and utilization condition of mineral resource in Guizhou[J]. Guizhou Geology,2012,29(3):220-224,219.
    [16]丁振华,王文华,瞿丽雅,等.贵州万山汞矿区汞的环境污染及对生态系统的影响[J].环境科学,2004,25(2):111-114.Ding Z H,Wang W H,Qu L Y,et al. Mercury pollution and its ecosystem effects in Wanshan mercury miner area,Guizhou[J].Environmental Science,2004,25(2):111-114.
    [17] Li Z G,Feng X B,Li G H,et al. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province,China[J]. Applied Geochemistry,2011,26(2):160-166.
    [18]陈佩英,周启勇,林树基,等.贵州梵净山九龙池一万年来的植被和气候变化[J].贵州地质,1992,9(2):167-177.Chen P Y,Zhou Q Y,Lin S J,et al. The changes of vegetation and climate of Jiulongchi section of Fanjingshan Mountain in Guizhou since 10000 years ago[J]. Guizhou Geology,1992,9(2):167-177.
    [19] Jin Z D,Han Y M,Chen L. Past atmospheric Pb deposition in Lake Qinghai, Northeastern Tibetan Plateau[J]. Journal of Paleolimnology,2010,43(3):551-563.
    [20] Zeng Y,Chen J G,Yang Y Q,et al. Huguangyan Maar Lake(SE China):A solid record of atmospheric mercury pollution history in a non-remote region[J]. Journal of Asian Earth Sciences,2017,147:1-8.
    [21] Eyrikh S,Eichler A,Tobler L,et al. A 320 year ice-core record of atmospheric Hg pollution in the Altai, Central Asia[J].Environmental Science&Technology,2017,51(20):11597-11606.
    [22] Amos H M,Sonke J E,Obrist D,et al. Observational and modeling constraints on global anthropogenic enrichment of mercury[J]. Environmental Science&Technology,2015,49(7):4036-4047.
    [23] Cortizas A M,Varela E P,Bindler R,et al. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog(Xistral Mountains)[J].Geochimica et Cosmochimica Acta,2012,82(4):68-78.
    [24] Kerfoot W C,Urban N R,Mc Donald C P,et al. Legacy mercury releases during copper mining near Lake Superior[J]. Journal of Great Lakes Research,2016,42(1):50-61.
    [25] Zhang Q G,Hang J,Wang F Y,et al. Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science&Technology,2012,46(10):5404-5413.
    [26] Wang X P,Yang H H,Gong P,et al. One century sedimentary records of polycyclic aromatic hydrocarbons,mercury and trace elements in the Qinghai Lake, Tibetan Plateau[J].Environmental Pollution,2010,158(10):3065-3070.
    [27] Yang H D,Battarbee R W,Turner S D,et al. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments[J]. Environmental Science&Technology,2010,44(8):2918-2924.
    [28] Engels S,Fong L S R Z,Chen Q,et al. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records[J]. Environmental Pollution,2018,235:907-917.
    [29] Fu X W,Feng X B,Sommar J,et al. A review of studies on atmospheric mercury in China[J]. Science of the Total Environment,2012,421-422:73-81.
    [30] Fu X W,Feng X B,Zhu W Z,et al. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of Southwestern China[J]. Environmental Pollution,2010,158(6):2324-2333.
    [31] Pacyna J M,Travnikov O,De Simone F,et al. Current and future levels of mercury atmospheric pollution on a global scale[J]. Atmospheric Chemistry and Physics,2016,16(19):12495-12511.
    [32] Drevnick P E,Yang H D,Lamborg C H,et al. Net atmospheric mercury deposition to Svalbard:Estimates from lacustrine sediments[J]. Atmospheric Environment,2012,59:509-513.
    [33] Duan J C,Tan J H. Atmospheric heavy metals and arsenic in China:Situation,sources and control policies[J]. Atmospheric Environment,2013,74:93-101.
    [34] Chen J M,Tan M G,Li Y L,et al. A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline[J].Atmospheric Environment,2005,39(7):1245-1253.
    [35] Bi X Y,Li Z G,Wang S X,et al. Lead isotopic compositions of selected coals,Pb/Zn ores and fuels in China and the application for source tracing[J]. Environmental Science&Technology,2017,51(22):13502-13508.
    [36]张棕巍,胡恭任,于瑞莲,等.泉州市大气降尘中金属元素污染特征及来源解析[J].环境科学,2016,37(8):2881-2888.Zhang Z W,Hu G R,Yu R L,et al. Characteristics and source apportionment of metals in the dustfall of Quanzhou City[J].Environmental Science,2016,37(8):2881-2888.
    [37] Ye L M,Huang M J,Zhong B Q,et al. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region(China):Characteristics, ecological risk assessment, and source apportionment[J]. Journal of Environmental Sciences,2018,70:106-123.
    [38] Pan Y P,Wang Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J]. Atmospheric Chemistry and Physics,2015,15(2):951-972.
    [39] Bacardit M, Krachler M, Camarero L. Whole-catchment inventories of trace metals in soils and sediments in mountain lake catchments in the Central Pyrenees:Apportioning the anthropogenic and natural contributions[J]. Geochimica et Cosmochimica Acta,2012,82:52-67.
    [40] Wang W,Liu X D,Zhao L W,et al. Effectiveness of leaded petrol phase-out in Tianjin,China based on the aerosol lead concentration and isotope abundance ratio[J]. Science of the Total Environment,2006,364(1-3):175-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700