用户名: 密码: 验证码:
Na_2S_2O_8、H_2O_2在氧化处理石油污染土壤中的持续有效性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Persistence and effectiveness of oxidants during the treatment of petroleum-contaminated soil by chemical oxidation with Na_2S_2O_8 and H_2O_2
  • 作者:杨冰 ; 陈坷铭 ; 李沁蔓 ; 刘宇程
  • 英文作者:YANG Bing;CHEN Ke-ming;LI Qin-man;LIU Yu-cheng;College of Chemistry and Chemical Engineering, Southwest Petroleum University;Institute of Industrial Hazardous Waste Disposal and Utilization, Southwest Petroleum University;
  • 关键词:石油污染 ; 土壤 ; 原位修复 ; 化学氧化 ; 过硫酸钠
  • 英文关键词:petroleum pollution;;soil;;in-situ remediation;;chemical oxidation;;persulfate
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:西南石油大学化学化工学院;西南石油大学工业危废处置与资源化利用研究院;
  • 出版日期:2019-10-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(21707111);; 西南石油大学科研“启航计划”项目(2017QHZ018)~~
  • 语种:中文;
  • 页:165-173
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
以过氧化氢(H_2O_2)和过硫酸钠(Na_2S_2O_8)为氧化剂,通过室内模拟实验,研究不同氧化剂及分次添加方式(1次或分3次)、外源添加零价铁(ZVI)处理对石油污染土壤中石油烃类污染物的去除能力,探讨了不同处理下氧化剂的持续性和去除污染物的有效性。结果表明:在氧化剂初始浓度为21、63、105 mmol·L~(-1)的处理中,H_2O_2在反应第2 d均已检测不到,Na_2S_2O_8剩余量在反应10 d后分别为11、35、60 mmol·L~(-1);反应10 d后,总石油烃类(TPH)总去除率在氧化剂初始浓度为63、105 mmol·L~(-1)的Na_2S_2O_8处理中显著高于H_2O_2处理(P<0.05),分别高出12.41%、14.21%;在第4~10 d Na_2S_2O_8和TPH剩余浓度的降低均非常缓慢,表明土壤中能活化Na_2S_2O_8的物质不足;加入ZVI显著提高了TPH总去除率(P<0.05),尤其促进了第4~10 d TPH的持续降解(分别增加了8.46%、8.49%、12.26%)。总量相等的H_2O_2分3次在第0、24、48 h投加,反应10 d后TPH降解率比一次性投加分别提高了17.26%、25.43%、28.11%。通过对反应体系有机组分的GC-MS图谱分析,反应10 d后H_2O_2分3次添加、ZVI活化Na_2S_2O_8处理中石油烃类总峰值分别降低了56.64%和57.60%,且部分长链烷烃被降解为相对较短的烷烃组分。研究表明:Na_2S_2O_8在石油污染土壤中持续性优于H_2O_2,但Na_2S_2O_8去除TPH的有效性随反应时间增加而降低;添加ZVI提高了Na_2S_2O_8去除TPH的有效性;分批次投加H_2O_2提高了石油污染土壤中的TPH降解率。
        Hydrogen peroxide(H_2 O_2)and sodium persulfate(Na_2S_2O_8)were used to treat petroleum-contaminated soil in laboratory experiments. The influences of different oxidants, fractional addition methods(1 or 3 times), and external addition of zero-valent iron(ZVI)on the degradation of total petroleum hydrocarbon(TPH)were investigated. The persistence of oxidants and the effectiveness of removing pollutants under different treatments were discussed. The results showed that H_2 O_2 was not detected on the second day of the reaction, but the remaining amount of Na_2S_2O_8 was 11, 35, and 60 mmol·L~(-1), respectively, after 10 days of reaction in treatments with initial oxidant concentration at 21, 63, and 105 mmol·L~(-1). After 10 days of reaction, the total removal rate of TPH in Na_2S_2O_8 treatment was 12.41% and 14.21%higher than that in H_2 O_2 treatment with the initial oxidant concentration at 63 mmol·L~(-1) and 105 mmol·L~(-1)(P<0.05), respectively. The decrease of Na_2S_2O_8 and TPH residual concentration was extremely slow on the 4 th to 10 th day, indicating that the substances capable of activating Na_2S_2O_8 were insufficient in the soil. Adding ZVI to Na_2S_2O_8 treatment significantly promoted the total removal rate of TPH(P<0.05), and the degradation of TPH during days 4~10 increased by 8.46%, 8.49%, and 12.26%, respectively, with initial oxidant concentration at 21, 63,and 105 mmol·L~(-1). When H_2 O_2 was added in three portions at 0, 24, and 48 h, with initial total oxidant concentration at 21, 63, and 105 mmol·L~(-1), TPH degradation rate rose by 17.26%, 25.43%, and 28.11%, respectively, after 10 days of reaction. GC-MS analysis of the organic components showed that the total peak area of petroleum hydrocarbons decreased by 56.64% and 57.60%, respectively, in treatments with H_2 O_2 added in three portions and ZVI-activated Na_2S_2O_8, and some long-chain alkanes were degraded to relatively"short-chain"alkane component. The overall results show that persistence of Na_2S_2O_8 in petroleum-contaminated soil is superior to that of H_2 O_2, but the effectiveness of Na_2S_2O_8 in removing TPH decrease with the reaction time. The addition of ZVI improve the effectiveness of Na_2S_2O_8 in removing TPH. FractionaladditionofH_2 O_2(added three times)increase the degradation rate of TPH in petroleum-contaminated soils.
引文
[1]杜卫东,万云洋,钟宁宁,等.土壤和沉积物石油污染现状[J].武汉大学学报(理学版), 2011, 57(4):311-322.DU Wei-dong, WAN Yun-yang, ZHONG Ning-ning, et al. Current status of petroleum-contaminated soil and sediments[J]. Journal of Wuhan University, 2011, 57(4):311-322.
    [2]王威,苏小四,张玉玲,等.石油类污染场地的自然衰减作用[J].吉林大学学报(地球科学版), 2011, 41(增刊1):310-314, 327.WANG Wei, SU Xiao-si, ZHANG Yu-ling, et al. Natural attenuation of a petroleum contaminated site[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(Suppl 1):310-314, 327.
    [3]冯俊生,张俏晨.土壤原位修复技术研究与应用进展[J].生态环境学报, 2014, 23(11):1861-1867.FENG Jun-sheng, ZHANG Qiao-chen. A review on the study on practice of soil remediation in situ[J]. Journal of Eco-Environment, 2014, 23(11):1861-1867.
    [4]吴昊,孙丽娜,王辉,等.活化过硫酸钠原位修复石油类污染土壤研究进展[J].环境化学, 2015, 34(11):2085-2095.WU Hao, SUN Li-na, WANG Hui, et al. Persulfate In-situ remediation of petroleum hydrocarbon contaminated soil[J]. Environmental Chemistry, 2015, 34(11):2085-2095.
    [5]燕启社,孙红文. Fenton氧化对土壤有机质及其吸附性能的影响[J].农业环境科学学报, 2006, 25(2):141-146.YAN Qi-she, SUN Hong-wen. Influence of Fenton oxidation on soil organic matter and its sorption characteristics[J]. Journal of Agro-Environment Science, 2006, 25(2):141-146.
    [6]赵丹,廖晓勇,阎秀兰,等.不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J].环境科学, 2011, 32(3):849-856.ZHAO Dan, LIAO Xiao-yong, YAN Xiu-lan, et al. Chemical oxidation for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J]. Environmental Science, 2011, 32(3):849-856.
    [7] Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91.
    [8] Innocenti I, Verginelli I, Massetti F, et al. Pilot-scale ISCO treatment of a MTBE contaminated site using a Fenton-like process[J]. Science of the Total Environment, 2014, 485/486:726-738.
    [9] Ranc B, Faure P, Croze V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons(PAHs):A review[J]. Journal of Hazardous Materials, 2016,312:280-297.
    [10] Watts R J, Teel A L. Treatment of contaminated soils and groundwater using in situ chemical oxidation[J]. Hazardous Waste Management,2006, 10(1):2-9.
    [11] Watts R J, Teel A L. Chemistry of modified Fenton′s reagent(catalyzed H2O2 propagations-CHP)for in situ soil and ground water remediation[J]. Journal of Environmental Engineering, 2005, 131(4):612-622.
    [12] Corbin J F, Teel A L, Allen-King M, et al. Reactive oxygen species responsible for the enhanced desorption of dodecane in modified Fenton′s systems[J]. Water Environment Research, 2007, 79(1):37-42.
    [13] Trantnyek P G, Waldemer R H. Kinetics of contaminant degradation by permanganate[J]. Environmental Science&Technology, 2006, 40(3):1055-1061.
    [14] KakosováE, Hrabák P,?erník M, et al. Effect of various chemical oxidation agents on soil microbial communities[J]. Chemical Engineering Journal, 2017, 314:257-265.
    [15] Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil:Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials,2011, 186(2/3):2097-2102.
    [16] Gates D D, Siegrist R L, Cline S R. Chemical oxidation of volatile and semi-volatile organic compounds in soil[C]//Proceedings of the 88th Annual Air and Waste Management Association Conference, San Antonio, Texas, 1995.
    [17] Liang C J, Chien Y C, Lin Y L. Impacts of ISCO persulfate, peroxide and permanganate oxidants on soils:Soil oxidant demand and soil properties[J]. Soil and Sediment Contamination:An International Journal, 2012, 21(6):701-719.
    [18] Chen K F, Chang Y C, Chiou W T. Remediation of diesel-contaminated soil using in situ chemical oxidation(ISCO)and the effects of common oxidants on the indigenous microbial community:A comparison study[J]. Journal of Chemical Technology&Biotechnology, 2016,91(6):1877-1888.
    [19]陈丽娜. Fenton和K2S2O8法处理五氯酚污染土壤实验研究[D].哈尔滨:哈尔滨工程大学, 2009.CHEN Li-na. Study on degradation of PCP contaminated soil using Fenton and K2S2O8 oxidation[D]. Harbin:Harbin Engineering University, 2009.
    [20] Xu J L, Deng X, Cui Y W, et al. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil[J]. Journal of Hazardous Materials, 2016, 320:160-168.
    [21]姚成,许艳,胡燕斌,等.碘量法测定双氧水的含量[J].江苏化工, 1996(3):51-53.YAO Cheng, XU Yan, HU Yan-bin, et al. Determination of hydrogen peroxide by iodometric method[J]. Jiangsu Chemical Industry, 1996(3):51-53.
    [22]魏子明,张文斌.超声提取-GC/MS法测定土壤中的半挥发性有机物[J].建筑工程技术与设计, 2017(9):745, 1685.WEI Zi-ming, ZHANG Wen-bin. Ultrasonic extraction, GC/MS method for determination of semi volatile organic compounds in the soil[J].Construction Engineering Technology and Design, 2017(9):745,1685.
    [23]魏德洲,秦煜民. H2O2在石油污染土壤微生物治理过程中的作用[J].中国环境科学, 1997, 17(5):429-432.WEI De-zhou, QIN Yu-min. Function of H2O2 in the bioremediation process of petroleum contaminated soil[J]. Chinese Environmental Science, 1997, 17(5):429-432.
    [24]马强,林爱军,马薇,等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展[J].生态毒理学报,2008, 3(1):1-8.MA Qiang, LIN Ai-jun, MA Wei, et al. A review of micro-biological degradation and remediation of total petroleum hydrocarbon in soil[J].Journal of Ecotoxicology, 2008, 3(1):1-8
    [25] Yang S Y, Wang P, Yang X, et al. A novel advanced oxidation process to degrade organic pollutants in wastewater:Microwave-activated persulfate oxidation[J]. Journal of Environmental Sciences, 2009, 21(9):1175-1180
    [26] Kemmitt S J, Wright D, Goulding K W, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 5(5):898-911.
    [27] Imtyaz Hussain.基于硫酸根自由基的高级氧化技术对典型有机污染物降解的研究[D].广州:华南理工大学, 2013.Imtyaz Hussain. The study of sulfate-radicals based on advanced oxidation processes for the degradation of typical organic compounds[D].Guangzhou:South China University of Technology, 2013.
    [28] Liang C J, Lai M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation[J]. Environmental Engineering Science,2008, 25(7):1071-1077.
    [29] Cullen L G, Tilston E L, Mitchell G R, et al. Assessing the impact of nano-and micro-scale zero valent iron particles on soil microbial activities:Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects[J]. Chemosphere, 2011, 82(11):1675-1682.
    [30] Chu W, Chan K H, Kwan C Y, et al. Degradation of atrazine by modified stepwise-Fenton′s processes[J]. Chemosphere, 2007, 67(4):755-761.
    [31] Zhang H, Choi H J, Huang C. Optimization of Fenton process for the treatment of landfill leachate[J]. Journal of Hazardous Materials,2005, 125(1):166-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700