用户名: 密码: 验证码:
厌氧活性污泥产电特性及产电过程微生物群落变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electricity production and microbial community change of anaerobic sludge
  • 作者:丁建军 ; 彭小伟 ; 韩业君
  • 英文作者:Jianjun DING;Xiaowei PENG;Yejun HAN;State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences;College of Life Sciences, University of Chinese Academy of Sciences;
  • 关键词:厌氧污泥 ; 微生物燃料电池 ; 产电 ; 高通量测序
  • 英文关键词:anaerobic sludge;;methane;;microbial fuel cells;;electron transport;;high-throughput sequencing
  • 中文刊名:过程工程学报
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国科学院过程工程研究所生化工程国家重点实验室;中国科学院大学生命科学学院;
  • 出版日期:2018-05-10 09:16
  • 出版单位:过程工程学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助项目(编号:21676279);; 国家高技术研究发展计划(863)资助项目(编号:2014AA021905);; 海南省重点研发计划资助项目(编号:ZDYF2016205)
  • 语种:中文;
  • 页:216-222
  • 页数:7
  • CN:11-4541/TQ
  • ISSN:1009-606X
  • 分类号:X703;X172
摘要
以厌氧活性污泥为接种液构建微生物燃料电池(MFC),检测了运行第1周期前后电池的理化性质及菌群变化情况。结果表明,MFC启动后产电性能良好,外接1000?电阻时输出电压可达0.62 V,功率密度达1247 mW/m2,内阻为143?,化学需氧量(COD)去除率达63.6%;高通量测序结果显示,MFC菌群与原始接种厌氧活性污泥菌群相比变化较明显,菌群多样性指数降低,优势菌门硬壁菌门(Firmicutes)和变形菌门(Proteobacteria)为产电菌群常见门,与MFC产电能力直接相关的克雷伯氏菌属(Klebsiella)富集并成为优势菌属,相对丰度达16.73%。
        The production of methane by anaerobic fermentation is the main treatment mode of organic waste such as wastewater, but subsequent processes of carbon dioxide separation, methane storage and transportation have restricted its application. Microbial fuel cells can directly convert the chemical energy of organic waste into electrical energy, and converting the traditional anaerobic fermentation methanogenesis process of organic waste into electricity production process, which is a greener and more environmentally friendly process and has broad application prospects. In present study, a microbial fuel cell(MFC) with good performance was constructed by using an anaerobicactivated sludge as inoculum. High-throughput sequencing was used to analyze the changes of bacteria and archaea before and after MFC operation. The results showed that when the external 1 000 ? resistor was used, the output voltage reached 0.62 V, the output power reached 1 247 mW/m2, and the internal resistance was 143 ?, the Coulomb efficiency was 9.9%, the COD removal rate of the sludge in anode chamber reached 64% after MFC operation. When the sludge was treated by MFC, only the electron was produced instead of traditional CH4 and H2, thereby avoiding problems such as CO2 separation, CH4 storage and transportation in the methanogenesis process. The composition of archaea was relatively stable, while the bacterial flora changed significantly. Compared with the original anaerobic sludge, the MFC microbial diversity index decreased, while the dominant bacteria group became more obvious. The dominant bacteria Firmicutes and Proteobacteria were accepted as the common electric producing bacteria. Klebsiella, which is directly related to MFC's ability to produce electricity, is enriched and became a dominant genus with a relative abundance of 16.73%. In addition, Hydrogenophaga is also abundantly enriched, which may be a novel electrogenic microorganism. This study provided theoretical and technical support for the conversion of organic waste into electrical energy through anaerobic treatment.
引文
[1]Trapero J R,Horcajada L,Linares J J,et al.Is microbial fuel cell technology read?an economic answer towards industrial commercialization[J].Applied Energy,2017,185(1):698-707.
    [2]Xu L,Zhao Y Q,Doherty L,et al.The integrated processes for wastewater treatment based on the principle of microbial fuel cells:a review[J].Critical Reviews in Environment Science and Technology,2016,46(1):60-91.
    [3]Logan B E.Microbial fuel cell[M].New Jersey:John Wiley and Sons,2008:49,93.
    [4]Quan X C,Quan Y P,Tao K,et al.Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs[J].Bioresource Technology,2013,128(1):259-265.
    [5]黄霞,梁鹏,曹效鑫,等.无介体微生物燃料电池的研究进展[J].中国给水排水,2007,23(4):1-6.Huang X,Liang P,Cao X X,et al.Progress in research of mediator-less microbial fuel cells[J].China Water and Wastewater,2007,23(4):1-6.
    [6]孙建,胡勇有.废水处理新理念?微生物燃料电池技术研究进展[J].工业用水与废水,2008,29(1):1-6.Sun J,Hu Y Y.Research progress of a novel notion for wastewater treatment?microbial fuel cell technology[J].Industrial Water and Wastewater,2008,29(1):1-6.
    [7]Hosseini S E,Wahid M A.Biogas utilization:experimental investigation on biogas flameless combustion in lab-scale furnace[J].Energy Conversion and Management,2013,74(8):426-432.
    [8]Kim J R,Min B,Logan B E.Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J].Applied Microbiology and Biotechnology,2005,68(1):23-30.
    [9]Howarth R W,Santoro R,Ingraffea A.Methane and the greenhouse-gas footprint of natural gas from shale formations[J].Climatic Change,2011,106(4):679-691.
    [10]Michael J M,Venkata G P,Kyoung Y K,et al.Electricity from methane by reversing methanogenesis[J].Nature Communications,2017,8:15419.
    [11]Shindell D T,Faluvegi G,Koch D M,et al.Improved attribution of climate forcing to emissions[J].Science,2009,326(5953):716-718.
    [12]Lee S Y,Kim H U.Systems strategies for developing industrial microbial strains[J].Nature Biotechnology,2015,33(10):1061-1072.
    [13]Langille M G I,Zaneveld J,Caporaso J G,et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature Biotechnology,2013,31(9):814-821.
    [14]Parkdh Z.Improved fuel cell and electrode designs for producing electricity from microbial degradation[J].Biotechnology and Bioengineering,2003,81(3):348-355.
    [15]尹亚琳,高崇洋,赵阳国,等.好氧-厌氧混合污泥启动微生物燃料电池产电性能及微生物群落动态特征[J].微生物学报,2014,54(12):1471-1480.Yin Y L,Gao C Y,Zhao Y G,et al.Electricity generation and dynamics characteristics of microbial community of microbial fuel cells started up with mixture of aerobic/anaerobic sludge[J].Acta Microbiologica Sinica,2014,54(12):1471-1480.
    [16]Oh S E,Min B,Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells[J].Environmental Science and Technology,2004,38(18):4900-4904.
    [17]李凤祥,周启星,李白.产电菌群及电子受体对微生物燃料电池性能的影响[J].应用生态学报,2009,20(12):3070-3074.Li F X,Zhou Q X,Li B.Effects of exoelectrogens and electron acceptors on the performance of microbial fuel cells[J].Chinese Journal of Applied Ecology,2009,20(12):3070-3074.
    [18]Liu Z H,Li X M,Jia B,et al.Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell[J].Water Science and Technology,2009,60(9):2339-2404。
    [19]付国楷,张林防,郭飞,等.榨菜废水MFC多周期运行产电性能及COD降解[J].中国环境科学,2017,37(4):140l-1407.Fu G K,Zhang L F,Guo F,et al.Electricity generation and CODremoval of MFC using mustard tuber wastewater as substrate in multi-cycle running[J].China Environmental Science,2017,37(4):140l-1407.
    [20]张建民,魏佳齐,崔心水,等.双阴极MFC启动过程中的电化学特性[J].环境工程学报,2017,12(11):6252-6258.Zhang J M,Wei J Q,Cui X S,et al.Electrochemical characterization of dual cathode MFC during start-up phase[J].Chinese Journal of Environmental Engineering,2017,12(11):6252-6258.
    [21]Liu Y,Whitman W B.Metabolic,phylogenetic,and ecological diversity of the methanogenic archaea[J].Annals of the New York Academy of Sciences,2008,1125(1):171-189.
    [22]Wood G E,Haydock A K,Leigh J A.Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon methanococcus maripaludis[J].Journal of Bacteriology,2003,185(8):2548-2554.
    [23]李颖,孙永明,孔晓英.微生物燃料电池中产电微生物的研究进展[J].微生物学通报,2009,32(9):1404-1409.Li Y,Sun Y M,Kong X Y.Progress in research of electrigens in microbial fuel cell[J].Microbiology,2009,36(9):1404-1409.
    [24]Liu M,Yuan Y,Zhang L X,et al.Bioelectricity generation by a gram-positive Corynebacterium sp.strain MFC03 under alkaline condition in microbial fuel cells[J].Bioresource Technology,2010,101(6):1807-1811.
    [25]曹荣,刘淇,赵玲,等.基于高通量测序的牡蛎冷藏过程中微生物群落分析[J].农业工程学报,2016,32(20):275-280.Cao R,Liu Q,Zhao L,et al.Microbial flora analysis of oyster during refrigerated storage by high throughput sequencing technology[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(20):275-280.
    [26]Zhang L X,Zhou S G,Zhuang L,et al.Microbial fuel cell based on Klebsiella pneumoniae biofilm[J].Electrochemistry Communications,2008,10(10):1641-1643.
    [27]Xia X,Cao X X,Liang P,et al.Electricity generation from glucose by a Klebsiella sp.in microbial fuel cell[J].Applied Microbiology and Biotechnology,2010,87(1):383-390.
    [28]Chen S,Dong X.Proteiniphilum acetatigenes gen.nov.,sp.nov.,from a UASB reactor treating brewery wastewater[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(6):2257-2261.
    [29]Rachel N V H,Joanne M S.Arsenite oxidation by the heterotrophy Hydrogenophaga sp.nov.NT-14:the arsenite oxidase and its physiological electron accaptor[J].Biochimica et Biophysica Acta,Bioenergetics,2004,1656(2/3):148-155.
    [30]Sun L W,Toyonaga M,Ohashi A,et al.Lentimicrobium saccharophilum gen.nov.,sp.nov.,a strictly anaerobic bacterium representing a new family in the phylum bacteroidetes,and proposal of Lentimicrobiaceae fam.nov.[J].International Journal of Systematic and Evolutionary Microbiology,2016,66(7):2635-2642.
    [31]Sharma V,Kundu P P.Biocatalysts in microbial fuel cells[J].Enzyme and Microbial Technology,2010,47(5):179-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700