用户名: 密码: 验证码:
整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater
  • 作者:信帅帅 ; 孙彤 ; 江波
  • 英文作者:XIN Shuaishuai;SUN Tong;JIANG Bo;State Key Laboratory of Petroleum Pollution Control,CNPC Research Institute of Safety and Environmental Technology;School of Environmental and Municipal Engineering,Qingdao University of Technology;
  • 关键词:地下水 ; As(Ⅲ)氧化 ; 整流电絮凝 ; 固定脱除 ; 原位修复
  • 英文关键词:groundwater;;As(Ⅲ) oxidation;;rectified alternating current electrocoagulation;;immobilization;;in-situ remediation
  • 中文刊名:环境化学
  • 英文刊名:Environmental Chemistry
  • 机构:石油石化污染物控制与处理国家重点实验室;青岛理工大学环境与市政工程学院;
  • 出版日期:2018-12-13 10:17
  • 出版单位:环境化学
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(51608284)资助~~
  • 语种:中文;
  • 页:199-205
  • 页数:7
  • CN:11-1844/X
  • ISSN:0254-6108
  • 分类号:X523
摘要
地下水中砷污染的原位修复治理对人类社会的可持续发展具有重要意义.本文研发了一种新型整流电絮凝反应体系,可实现对缺氧地下水As(Ⅲ)的原位修复.实验结果表明,最优操作条件为:电流密度为4.4 m A·cm~(-2),铁棒和MMO的阳极工作时间比值(TFe-anode/TMMO-anode)为1∶2,反应周期为24 s.在最优条件下,含有500μg·L~(-1)As(Ⅲ)的模拟地下水经过30 min电絮凝处理后砷的固定脱除效率达92%,总能耗为0.11 kW·hm~(-3).此外,水体中的HCO_3~-和PO_4~(3-)等无机阴离子对砷的固定具有抑制作用.在该反应体系内,电解生成的Fe(Ⅱ)与O2之间的氧化反应生成具有强氧化性的Fe(Ⅳ)可有效将As(Ⅲ)氧化成毒性较小且更易于固定脱除的As(Ⅴ),进而显著促进了砷在Fe(Ⅲ)絮凝沉淀作用下的固定脱除.
        In situ remediation of arsenic in anoxic groundwater is significant for the sustainable development of humankind. In this study,a wave rectified alternating current electrocoagulation process was developed for the oxidative sequestration of As( Ⅲ) in the simulated anoxic groundwater. The optimal current density,TFe-anode/TMMO-anoderatio and reaction period for As( Ⅲ)sequestration were 4. 4 m A·cm~(-2),1 ∶ 2 and 24 s,respectively. Under the optimal conditions,approximately 92% of 500 μg·L~(-1) As( Ⅲ) was removed after 30 min reaction at pH 8 with the energy consumption of 0.11 kW·hm~(-3). In addition,the presence of HCO_3~- and PO_4~(3-) deteriorated the efficiency of As( tot) sequestration. In this process,the oxidation of As( Ⅲ) to As( Ⅴ) was induced by the intermediate oxidant,i. e.,Fe( Ⅳ),produced in the process of O_2 reacting with Fe( Ⅱ),followed by the sequestration of As( Ⅴ) by the freshly generated amorphous Fe( Ⅲ)( oxyhydr)oxides.
引文
[1] NIDHEESH P V,TSA S. Arsenic removal by electrocoagulation process:Recent trends and removal mechanism[J]. Chemosphere,2017,181:418-432.
    [2] RODRIGUEZLADO L,SUN G,BERG M,et al. Groundwater arsenic contamination throughout China[J]. Science,2013,341(6148):866-868.
    [3] LI L,VAN GENUCHTEN C M,ADDY S E,et al. Modeling As(Ⅲ)oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science&Technology,2012,46(21):12038-12045.
    [4] KOMADEL P. Quantitative assay of minerals for Fe2+and Fe3+using 1,10-phenanthroline:III. A rapid photochemical method[J]. Clays&Clay Minerals,1988,36(4):379-381.
    [5] WAN W,PEPPING T J,BANERJI T,et al. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation[J].Water Research,2011,45(1):384-392.
    [6] TONG M,YUAN S,ZHANG P,et al. Electrochemically induced oxidative precipitation of Fe(Ⅱ)for As(Ⅲ)oxidation and removal in synthetic groundwater[J]. Environmental Science&Technology,2014,48(9):5145-5153.
    [7] LAKSHMANAN D,CLIFFORD D A,SAMANTA G,et al. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation[J]. Water Research,2010,44(19):5641-5652.
    [8] HUG S J,LEUPIN O. Iron-catalyzed oxidation of arsenic(Ⅲ)by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction[J]. Environmental Science&Technology,2003,37(12):2734-2742.
    [9] MAN T,YUAN S,WANG Z,et al. Electrochemically induced oxidative removal of As(Ⅲ)from groundwater in a dual-anode sand column[J]. Journal of Hazardous Materials,2016,305:41-50.
    [10] DELAIRE C,AMROSE S,ZHANG M,et al. How do operating conditions affect As(Ⅲ)removal by iron electrocoagulation?[J]. Water Research,2017,112:185-194.
    [11] KING D W,FARLOW R. Role of carbonate speciation on the oxidation of Fe(II)by H2O2[J]. Marine Chemistry,2000,70(1-3):201-209.
    [12] PANG S Y,JIANG J,MA J. Oxidation of sulfoxides and arsenic(Ⅲ)in corrosion of nanoscale zero valent iron by oxygen:Evidence against ferryl ions(Fe(Ⅳ))as active intermediates in Fenton reaction[J]. Environmental Science&Technology,2011,45(1):307-312.
    [13] BISSEN M,FRIMMEL F H. Arsenic—a review. Part II:Oxidation of arsenic and its removal in water treatment[J]. Clean-Soil,Air,Water,2010,31(2):97-107.
    [14] ZHAO X,ZHANG B,LIU H,et al. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process[J]. Journal of Hazardous Materials,2010,184(1-3):472-476.
    [15]刘辉利,梁美娜,朱义年,等.氢氧化铁对砷的吸附与沉淀机理[J].环境科学学报,2009,129(5):1011-1020.LIU H L,LIANG M N,ZHU Y N,et al. The adsorption of arsenic by ferric hydroxide and its precipitation mechanism[J]. Acta Scientiae Circumstantiae,2009,129(5):1011-1020(in Chinese).
    [16] JIA Y,XU L,FANG Z,et al. Observation of surface precipitation of arsenate on ferrihydrite[J]. Environmental Science&Technology,2006,40(10):3248-3253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700