用户名: 密码: 验证码:
不同基质配比对农村生活垃圾厌氧发酵效率及稳定性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of different distributive ratios of typical rural wastes on efficiency and stability of co-digestion system
  • 作者:金鹏康 ; 陆佳宁 ; 李志鹏
  • 英文作者:JIN Peng-kang;LU Jia-ning;LI Zhi-peng;School of Environmental & Municipal Engineering,Xi'an University of Architecture & Technology;
  • 关键词:环境工程学 ; 厌氧发酵 ; 农村生活垃圾 ; 挥发性脂肪酸 ; 甲烷生成速率
  • 英文关键词:environmental engineering;;anaerobic digestion;;rural waste;;volatile fatty acids;;methane production rate
  • 中文刊名:安全与环境学报
  • 英文刊名:Journal of Safety and Environment
  • 机构:西安建筑科技大学环境与市政工程学院;
  • 出版日期:2019-02-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划项目(2016YFC0400701)
  • 语种:中文;
  • 页:306-313
  • 页数:8
  • CN:11-4537/X
  • ISSN:1009-6094
  • 分类号:X799.3
摘要
以典型农村生活垃圾餐厨垃圾(Food Waste,FW)与纸类垃圾(Paper Waste,PW)为基质,通过中温(35℃)批次厌氧共发酵试验,探明不同配比的基质在厌氧共发酵4阶段(水解阶段、酸化阶段、乙酸化阶段、产甲烷阶段)的动力学特性,再结合挥发性脂肪酸(Volatile fatty acids,VFAs)在系统运行过程中的变化,确定FW与PW的最佳配比。结果表明,水解阶段是纸类垃圾的主要限速步骤,而VFAs积累限制了餐厨垃圾甲烷化进程的提高,且VFAs积累主要以丙酸与丁酸为主。当w(FW)≥35%时,产甲烷速率随VFAs质量浓度增大而线性减小,过高的VFAs质量浓度抑制了产甲烷菌的活性。FW与PW最佳基质配比为35∶65(质量比),在此条件下反应速率最为突出,系统运行高效,VFAs能及时被产甲烷菌利用,无有机酸积累,系统运行平稳。
        Using food waste( FW) and paper waste( PW) as the substrates,the present paper intends to present an experimental research result by setting 7 different mixing ratios( 100:0,80: 20,65: 35,50: 50,35: 65,20: 80,0: 100) by the batch anearobic digestion tests under mesophilic( 35 ℃) conditions.At the same time,the paper has also measured the daily biogas production,the concentrations of methane( CH4) and the carbon dioxide( CO2) in the gas,the variation of SCOD and VFAs through analysis ofthe experimental data of each anaerobic stage by the modified Gompertz equation in hope to determine the ki-netic mechanism of the 4 stages in the anaerobic digestion( i. e.the hydrolysis,acetogenesis,acidogenesis and methanogenesis).In spite of this,special focus of the paper has also been given to the variation of the composition and content of VFAs so as to determine the optimal ratio of FW and PW. The results indicate that hydrolysis has been found to work as a rate-limiting step for PW,with its main content being lignocellulose. Moreover,the accumulation of VFAs can also be found restricting methane production. And,if the co-digestion of FW and PW can help to enhance the hydrolysis rate through improving the balance of the nutrient,the co-digestion of FW and PW should be able to provide enough buffering capacity to avoid inhibition of VFAs in the anaerobic digestion systems,which may lead to increase the methane production rate by a percentage from about 46. 3% to76. 5%,which can be compared to the separate digestion of FW and PW. What is more,the accumulation of VFAs has been mainly resulted from the methanogenesis. And,propionate and butyrate would become the main component of the accumulated VFAs. And,if w( FW) ≥ 35%,the methane production rate would have begun to decrease with the increase of the concentration of VFAs in a linear way,suggesting that the high VFAs concentration would begin to inhibit the activity of methanogens.And,then,when the mass ratio tends to become m( FW) ∶m( PW) = 35 ∶ 65,the concentration rate and the component of VFAs would become beneficial to the growth of methanogens.Under such a condition,the reaction rate may become the most prominent and the system can also be expected to be stable and efficient.
引文
[1] HAN Zhiyong(韩智勇),FEI Yongqiang(费勇强),LIUDan(刘丹),et al. Yield and physical characteristics a-nalysis of domestic waste in rural areas of China and itsdisposal proposal[J]. Transactions of the Chinese Societyof Agricultural Engineering(农业工程学报),2017,33(15):1-14.
    [2] ZHAO Jingwei(赵晶薇),ZHAO Rui(赵蕊),HE Yan-fen(何艳芬),et al. Rural domestic garbage processingpattern based on the principle of 3R[J]. China Popula-tion·Resources and Environment(中国人口·资源与环境),2014,24(5):263-266.
    [3] HAO Xiaodi(郝晓地),ZHOU Peng(周鹏),CAO Daqi(曹达啓). Analyses of disposal methods and carbon e-missions of food wastes[J]. Chinese Journal of Environ-mental Engineering(环境工程学报),2017,11(2):673-682.
    [4] ZHANG C,SU H,BAEYENS J,et al. Reviewing the an-aerobic digestion of food waste for biogas production[J].Renewable&Sustainable Energy Reviews,2014,38(5):383-392.
    [5] NOIKE T,ENDO G,CHANG J E,et al. Characteristicsof carbohydrate degradation and the rate-limiting step inanaerobic digestion[J]. Biotechnology&Bioengineering,1985,27(10):1482-1489.
    [6] CAPSONTOJO G,TRABLY E,ROUEZ M,et al. Dryanaerobic digestion of food waste and cardboard at differ-ent substrate loads,solid contents and co-digestion pro-portions[J]. Bioresource Technology,2017,233:166.
    [7] LI Jinping(李金平),CUI Weidong(崔维栋),HUANGJuanjuan(黄娟娟),et al. Synergistic effect of multipleraw materials anaerobic digestion on methane productionperformances[J]. China Environmental Science(中国环境科学),2018,38(3):1024-1032.
    [8] XIE S,HAI F I,ZHANG X,et al. Anaerobic co-diges-tion:a critical review of mathematical modelling for per-formance optimization[J]. Bioresource Technology,2016,222:498-512.
    [9] HILLS D J. Biogas from a high solids combination of dairymanure and barley straw[J]. Transactions of the Asae,1980,23(6):1500-1504.
    [10] LI Dong(李东),SUN Yongming(孙永明),YUAN Zhen-hong(袁振宏),et al. Methane production by anaerobicco-digestion of food waste and waste paper[J]. Acta Sci-entiae Circumstantiae(环境科学学报),2009,29(3):577-583.
    [11] JIANG Tao(蒋滔),LI Ping(李平),REN Guiying(任桂英),et al. Study on mesophilic gassy fermentation byfood waste mixed with corn straw[J]. Journal of Ecologyand Rural Environment(生态与农村环境学报),2015,31(1):124-130.
    [12] ELMASHAD H M,ZHANG R. Biogas production fromco-digestion of dairy manure and food waste[J]. Biore-source Technology,2010,101(11):4021.
    [13] BATSTONE D J,KELLER J,ANGELIDAKI I,et al.The IWA anaerobic digestion model No 1(ADM1)[J].Water Science&Technology,2002,45(10):65-73.
    [14] QIAN L,HAO L,WANG G,et al. Effects of loadingrate and temperature on anaerobic co-digestion of foodwaste and waste activated sludge in a high frequencyfeeding system,looking in particular at stability and effi-ciency[J]. Bioresource Technology, 2017, 237:231-239.
    [15] NEVES L,OLIVEIRA R,ALVES M M. Anaerobic co-digestion of coffee waste and sewage sludge[J]. WasteManagement,2006,2 6(2):176-181.
    [16] HAN S K,SHIN H S. Biohydrogen production by anae-robic fermentation of food waste[J]. International Jour-nal of Hydrogen Energy,2004,29(6):569-577.
    [17] ZHAO Jianqiang(赵剑强),ZHU Junhuang(朱浚黄).Theoretical discussion on methane production and meth-ane content in anaerobic digestion[J]. EnvironmentalProtection in Transportation(交通环保),1993(4):16-20.
    [18] LI Q,QIAO W,WANG X,et al. Kinetic characteriza-tion of thermophilic and mesophilic anaerobic digestionfor coffee grounds and waste activated sludge[J]. WasteManagement,2015,36:77-85.
    [19] WANG Yuanyuan(王远远). Research on process param-eters of anaerobic fermentation of vegetable waste for bio-gas production and comprehensive utilization of anaerobicfermentation residues(蔬菜废弃物沼气发酵工艺条件及沼气发酵残余物综合利用技术的研究)[D].Shanghai:Shanghai Jiaotong University,2008.
    [20] EBNER J H,LABATUT R A,LODGE J S,et al. Anae-robic co-digestion of commercial food waste and dairymanure:characterizing biochemical parameters and syn-ergistic effects[J]. Waste Management,2016,52:286-294.
    [21] JIANG Zongshan(姜宗姗),PING Jiapeng(平佳芃),GUO Yankai(郭延凯),et al. Effect of different ratios ofcow manure and corn straw on the mixed anaerobic fer-mentation rate[J]. Journal of Hebei University of Scienceand Technology(河北科技大学学报),2016,37(4):396-405.
    [22] MA Xuguang(马旭光),JIANG Tao(江滔),TANGQiong(唐琼),et al. Effects of dairy manure additionfrom methane production under semi-solid state condition[J]. Transactions of the Chinese Society of AgriculturalEngineering(农业工程学报), 2016, 32(S2):323-330.
    [23] OZTURK M. Conversion of acetate,propionate and bu-tyrate to methane under thermophilic conditions in batchreactors[J]. Water Research, 1991, 25(12):1509-1513.
    [24] XU Manjuan(许曼娟),LI Qian(李倩),ZHANGNianrui(张念瑞),et al. Effects of substrates compo-nents on kinetic characterization of co-digestion of foodwaste and waste activated sludge[J]. Chinese Journal ofEnvironmental Engineering(环境工程学报),2018,12(1):278-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700