用户名: 密码: 验证码:
高盐废水分质结晶及资源化利用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Fractional Crysallization Technologies for Recovering Salts from High Salinity Wastewater
  • 作者:黄欣 ; 陈业钢 ; 苏楠楠 ; 卢海娇 ; 李静 ; 李娟芬 ; 郝红勋
  • 英文作者:Huang Xin;Chen Yegang;Su Nannan;Lu Haijiao;Li Jing;Li Juanfen;Hao Hongxun;National Engineering Research Centre of Industrial Crystallization Technology, Tianjin University;Collaborative Innovation Center of Chemical Science and Chemical Engineering;Shanghai Denovo Environment Protection Co.Ltd.;
  • 关键词:高盐废水 ; 分质结晶 ; 资源化利用 ; 近零排放
  • 英文关键词:high salinity wastewater;;fractional crystallization;;resource utilization;;near-zero emissions
  • 中文刊名:化学工业与工程
  • 英文刊名:Chemical Industry and Engineering
  • 机构:天津大学国家工业结晶工程技术研究中心;天津化学化工协同创新中心;上海东硕环保科技股份有限公司;
  • 出版日期:2019-01-11
  • 出版单位:化学工业与工程
  • 年:2019
  • 期:01
  • 基金:科技部重点研发计划项目(2016YFB0600504)
  • 语种:中文;
  • 页:14-27
  • 页数:14
  • CN:12-1102/TQ
  • ISSN:1004-9533
  • 分类号:X703
摘要
随着我国国民经济的快速发展以及工业规模的不断扩大,工业用水量与工业废水量也逐年增长,尤其是煤化工、钢铁、医药等行业废水,增长尤为显著。不仅加剧了我国水资源的紧缺状况,众多领域产生的高盐废水也对人类生活环境造成了恶劣影响。由于高盐废水来源广泛且处理技术难度高,如何经济有效地处理高盐废水成为技术瓶颈。目前处理高盐废水的方法主要包括电解法、反渗透法、渗透法、蒸馏法、焚烧法和蒸发结晶法等,但这些方法大多存在处理费用高、运行稳定性差,或者具有二次污染等问题。而分质结晶技术以其能耗低、过程绿色且分盐产品能够实现资源化利用等优势,具有广阔的应用前景。综述了当前常用的高盐废水分质结晶技术,并对其应用状况进行分析与研究,为高盐废水真正实现零排放、分盐产品资源化利用提供研究方向。
        With the rapid development of China's national economy and the continuous expansion of industrial scale, the industrial water consumption and industrial wastewater volume have also increased, especially in the coal chemical, steel, pharmaceutical and other industries. This has not only aggravated the shortage of water resources in China, but also adversely affected the human living environment due to the high salinity wastewater generated in many fields. Additionally, how to deal with high salinity wastewater has become a technical bottleneck due to the wide sources of high salinity wastewater and the complexity of the compostions of the wastewater. At present, the methods for treating high salinity wastewater mainly include electrolysis, reverse osmosis, permeation, distillation, incineration, evaporative crystallization, etc. But most of these methods have high processing costs, poor operational stability, or secondary pollution problems. The fractional crystallization technology has broad application prospects because of its low energy consumption, green process and salt-distributing products. In this paper, the commonly used high salinity wastewater crystallization technologies will be summarized and analyzed. This will help to promote research and application on near-zero emissions and resource utilization of high salinity wastewater.
引文
[1] 晁雷, 邵雪, 胡成, 等.高盐废水处理工艺技术研究进展[J]. 安徽农业科学,2011,39(31):19 387-19 389Chao Lei, Shao Xue, Hu Cheng, et al. Research progress on high salt wastewater treatment technology[J]. Anhui Agricultural Sciences, 2011,39(31):19 387-19 389(in Chinese)
    [2] Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review[J]. Water research, 2006, 40(20): 3 671-3 682
    [3] 冉光阳.高盐废水零排放关键技术研究[D]. 河北 邯郸:河北工程大学,2017Ran Guangyang. Research on key technologies of zero emission of high-salt wastewater[D]. Hebei Handan: Hebei University of Engineering, 2017(in Chinese)
    [4] 李柄缘, 刘光全. 高盐废水处理工艺技术研究进展[J]. 化工进展, 2014, 33(2): 493-497Li Bingyuan, Liu Guangquan. Research progress on high salt wastewater treatment technology[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 493-497(in Chinese)
    [5] 牟伟腾, 刘宁, 卢清松, 等. 煤化工含盐废水“近零排放”技术进展[J]. 煤炭加工与综合利用, 2018, 6: 42-48Mou Weiteng, Liu Ning, Lu Qingsong, et al. Advances in “near zero emission” technology for coal chemical salt-containing wastewater[J]. 2018, 6: 42-48(in Chinese)
    [6] 熊英禹, 付忠田, 黄戊生. 化学沉淀法处理模拟含铜废水的研究[J]. 环境保护科学, 2014, 40(2): 35-38Xiong Yingyu, Fu Zhongtian, Huang Wusheng. Study on the treatment of simulated copper-containing wastewater by chemical precipitation[J]. Environmental Protection Science, 2014, 40(2): 35-38(in Chinese)
    [7] 张弦, 叶春松, 黄建伟, 等. 高盐废水残余Ca(II)的离子交换软化实验[J]. 热力发电, 2018, 8: 66-72Zhang Xian, Ye Chunsong, Huang Jianwei, et al. Ion exchange softening experiment of residual Ca(II) in high-salt wastewater[J]. Thermal Power Generation, 2018, 8: 66-72(in Chinese)
    [8] 吴智兵. 膜浓缩+多效蒸发在处理高浓度含盐废水中的应用[J]. 中国氯碱, 2017, 4: 36-38Wu Zhibing. Application of membrane concentration+multi-effect evaporation in treatment of high concentration salt-containing wastewater[J]. China Chlor-Alkali, 2017, 4: 36-38(in Chinese)
    [9] Malaeb L,Ayoub G M. Reverse osmosis technology for water treatment:State of the art review[J]. Desalination, 2011, 267(1): 1-8
    [10] Zeman L J, Zydney A L. Microfiltration and ultrafiltration: Principles and applications[M]. Florida: CRC Press, 2017
    [11] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254
    [12] Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: Water sources, technology, and today’s challenges[J]. Water Research, 2009, 43(9): 2 317-2 348
    [13] 宋哈楠, 李明, 张磊. 内蒙古自治区高含盐水处理技术现状及进展[J]. 北方环境, 2013, 29(1): 106-110Song Hanan, Li Ming, Zhang Lei, et al. Current status and progress of high-brine treatment technology in inner mongolia autonomous region[J]. Environmental Science and Management, 2013, 29(1): 106-110(in Chinese)
    [14] Chen C, Smye S W, Robinson M P, et al. Membrane electroporation theories: A review[J]. Medical and Biological Engineering and Computing, 2006, 44(1): 5-14
    [15] 张耀煌,邢莉玲.热浓缩在废水处理中的应用[J]. 安徽化工, 2008, 34(1): 55-57Zhang Yaohuang, Xing Liling. Application of heat concentration in wastewater treatment[J]. Anhui Chemical Industry, 2008, 34(1): 55-57(in Chinese)
    [16] 袁惠新,金澄澄,付双成. 蒸发技术在高含盐废水处理中的研究进展[J]. 现代化工, 2017, 37(5): 50-54Yuan Huixin, Jin Chengcheng, Fu Shuangcheng. Research progress of evaporation technology in the treatment of high-salt wastewater[J]. Modern Chemical Industry, 2017, 37(5): 50-54(in Chinese)
    [17] 王海,张峰榛,王成端, 等. MVR技术处理高盐废水工艺的模拟与分析[J]. 环境工程, 2015, 33(10): 35-37Wang Hai, Zhang Fengzhen, Wang Chengrui, et al. Simulation and analysis of MVR technology for treatment of high-saline wastewater[J]. Environmental Engineering, 2015, 33(10): 35-37(in Chinese)
    [18] 毛彦霞.蒸汽机械再压缩技术处理含盐废水试验研究[D]. 重庆: 重庆交通大学, 2014Mao Yanxia. Experimental study on treatment of salty wastewater by steam mechanical recompression technology[D]. Chongqing: Chongqing Jiaotong University, 2014(in Chinese)
    [19] Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation [J]. Journal of Membrane Science, 2009, 331(1): 31-39
    [20] 曲风臣. 煤化工废水“零排放”技术要点及存在问题[J]. 化学工业, 2013, 31(2): 18-24Qu Fengchen. Technical points and problems of “zero emission” of coal chemical wastewater[J]. Chemical Industry, 2013, 31(2): 18-24(in Chinese)
    [21] 朱晓东. 强制蒸发在大柴旦盐湖卤水提钾工艺中的运用[J]. 化工矿物与加工, 2011, 40(11): 14-16Zhu Xiaodong. Application of forced evaporation in potassium extraction process in Dachaidan salt lake[J]. Industrial Minerals & Processing. 2011, 40(11): 14-16(in Chinese)
    [22] Turek M, Dydo P, Klimek R. Salt production from coal-mine brine in ED-evaporation-crystallization system[J]. Desalination, 2008, 221(1): 238-243
    [23] Ali A, Quist-Jensen C A, Macedonio F, et al. Application of membrane crystallization for minerals’ recovery from produced water[J]. Membranes, 2015, 5(4): 772-792
    [24] Heijman S G J, Guo H, Li S, et al. Zero liquid discharge: Heading for 99% recovery in nanofiltration and reverse osmosis[J]. Desalination, 2009, 236(1): 357-362
    [25] 徐振刚, 孙晋东. 中煤集团煤化工污水处理思考与实践[J]. 煤炭加工与综合利用, 2014, 8: 28-32Xu Zhengang, Sun Jindong. Thinking and practice on treatment of coal chemical wastewater in China Coal Group[J]. Coal Processing & Comprehensive Utilization, 2014, 8: 28-32(in Chinese)
    [26] 吴限. 煤化工废水处理技术面临的问题与技术优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016Wu Xian. Research on problems and technical optimization of coal chemical wastewater treatment technology[D]. Haerbin: Harbin Institute of Technology, 2016(in Chinese)
    [27] 刘晓鹏. 煤化工浓盐水蒸发结晶分离工业盐的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017Liu Xiaopeng. Experimental study on evaporation and crystallization of industrial salt by concentrated brine in coal chemical industry[D]. Haerbin: Harbin Institute of Technology, 2017(in Chinese)
    [28] 张若桦. 四元水盐体系溶解度研究方法的介绍[J]. 化学通报, 1962, 14 (3): 42-44Zhang Ruohua. Introduction to the research method of solubility of quaternary water and salt system[J]. Chemistry Bulletin, 1962, 14 (3): 42-44(in Chinese)
    [29] 刘宝树, 何岩, 孙华, 等. 45 ℃ Na2SO4-MgSO4-H2O 三元水盐体系相平衡研究[J]. 河北科技大学学报, 2013, 34(1): 36-39Liu Baoshu, He Yan, Sun Hua, et al. Study on phase equilibrium of Na2SO4-MgSO4-H2O ternary water salt system at 45 ℃[J]. Journal of Hebei University of Science and Technology, 2013, 34(1): 36-39(in Chinese)
    [30] Huang J, Hou B, Guo N, et al. Solid-Liquid phase equilibria of ternary system Na2S2O3-Na2SO4-H2O in a wide range of temperatures: Measurement and application[J]. Journal of Chemical Thermodynamics, 2018, 125: 1-10
    [31] Lu H, Wang J, Yu J, et al. Phase equilibria for the pseudo-ternary system (NaCl+Na2SO4+H2O) of coal gasification wastewater at T=(268.15 to 373.15)K[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 955-962
    [32] Su N, Wang Y, Xiao Y, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1 705-1 713
    [33] 杨利强. 2,3,5-三甲基氢醌二酯结晶过程及晶体形态调控研究[D]. 天津: 天津大学, 2014Yang Liqiang. Crystallization process and crystal morphology control of 2,3,5-trimethylhydroquinone diester[D]. Tianjin: Tianjin University, 2014(in Chinese)
    [34] 任效京. 硫酸盐结晶介稳区性质及相平衡[D]. 新疆: 新疆大学, 2016Ren Xiaojing. Study on sulfate crystal metastable zone properties and phase equilibrium[D]. Xinjiang: Xinjiang University, 2016(in Chinese)
    [35] Kashchiev D. Nucleation[M]. Netherlands: Elsevier, 2000
    [36] 唐娜, 王学魁, 袁建军,等. Mg2+、K+//Cl-、SO【math13z】-H2O体系添加剂对硫酸钾结晶动力学的影响[J]. 盐业与化工, 2006, 35(4): 7-9Tang Na, Wang Xuekui, Yuan Jianjun, et al. Effect of additives in Mg2+、K+//Cl-、SO【math14z】-H2O system on crystallization kinetics of potassium sulphate[J]. Salt Industry and Chemical Industry, 2006, 35(4): 7-9(in Chinese)
    [37] 闫红莲,简丽,李佳宁. NaCl对硫酸钡结晶动力学的影响研究[J]. 内蒙古工业大学学报, 2010, 29 (4): 268-273Yan Honglian, Jian Li, Li Jianing. Effect of NaCl on crystallization kinetics of barium sulfate[J]. Journal of Inner Mongolia Polytechnic University, 2010, 29(4): 268-273(in Chinese)
    [38] 杨立斌, 杜娟, 沙作良, 等. 十水硫酸钠冷却结晶动力学的研究[J]. 无机盐工业, 2009, 41(4): 18-20Yang Libin, Du Juan, Sha Zuoliang, et al. Study on crystallization kinetics of sodium sulfate decahydrate[J]. Inorganic Chemicals Industry, 2009, 41(4): 18-20(in Chinese)
    [39] Becheleni E M A, Rodriguezpascual M, Lewis A E, et al. Influence of phenol on the crystallization kinetics and quality of ice and sodium sulfate decahydrate during eutectic freeze crystallization[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11 926-11 935
    [40] 任明丹. 含钠及含铵废水的资源化利用研究[D]. 郑州:郑州大学, 2015Ren Mingdan. Study on resource utilization of sodium and ammonium-containing wastewater[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese)
    [41] 王丽英, 李林, 刘汉锐. 三元相图分盐法处理焦炉煤气HPF脱硫废液实践[J]. 鞍钢技术, 2013, 4: 59-62Wang Liying, Li Lin, Liu Hanrui. Practice of treating coke oven gas HPF desulfurization waste liquid by ternary phase diagram salt separation method[J]. Angang Technology, 2013, 4: 59-62(in Chinese)
    [42] 党来芳. ADC废水蒸发结晶工艺技术优化研究[D]. 天津: 天津科技大学, 2016Dang Laifang. Optimization of ADC wastewater evaporation process technology[D]. Tianjin: Tianjin University of Science & Technology, 2016(in Chinese)
    [43] 何岩. 硫酸钠-硫酸镁-水三元水盐体系结晶分离研究[D]. 石家庄: 河北科技大学, 2013He Yan. Crystallization separation of sodium sulfate-magnesium sulfate-water ternary water salt system[D]. Shijiazhuang: Hebei University of Science & Technology, 2013(in Chinese)
    [44] 郝红勋, 卢海娇, 苏楠楠, 等. 从高盐废水中提取可资源化利用的高纯度硫酸钠和氯化钠的分质结晶方法: 中国, 107867707A[P]. 2018-04-03
    [45] 武彦芳, 张俊岭, 李宁, 等. 煤化工高含盐废水资源化零排放技术的运行效果研究[J]. 煤炭加工与综合利用, 2017, 6: 32-35Wu Yanfang, Zhang Junling, Li Ning, et al. Study on operation effect of zero-emission technology for recycling of high-salt wastewater from coal chemical industry[J]. Coal Processing & Comprehensive Utilization, 2017, 6: 32-35(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700