用户名: 密码: 验证码:
可见光驱动微生物光电化学池处理剩余污泥同步产氢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Visible light-driven microbial photoelectrochemical cell for sludge reduction and hydrogen generation
  • 作者:杨政伟 ; 蔺莉莉 ; 张梦雪 ; 顾莹莹 ; 赵朝成 ; 张秀霞 ; 刘其友 ; 张云波
  • 英文作者:YANG Zhengwei;LIN Lili;ZHANG Mengxue;GU Yingying;ZHAO Chaocheng;ZHANG Xiuxia;LIU Qiyou;ZHANG Yunbo;Department of Environmental and Safety Engineering,China University of Petroleum(East China);
  • 关键词:太阳能 ; MoS_3/SiNWs光阴极 ; 生物阳极 ; 产氢 ; 剩余污泥
  • 英文关键词:solar energy;;MoS_3/SiNWs photocathode;;bioanode;;hydrogen production;;residual sludge
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:中国石油大学(华东)环境与安全工程系;
  • 出版日期:2019-01-18 16:47
  • 出版单位:环境科学学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(No.41201303);; 山东省自然科学基金(No.ZR2017QEE016);; 中央高校基本科研业务费专项基金(No.17CX02075);; 中国石油大学(华东)研究生创新工程基金(No.YCX2018048)
  • 语种:中文;
  • 页:148-156
  • 页数:9
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X703
摘要
氢气是一种理想的清洁能源.太阳能驱动的微生物光电化学池(Microbial photoelectrochemical cell, MPEC)因可同时实现废物处理与自发产氢而受到人们的关注.本文以剩余污泥为底物,构建了一种由无定型硫化钼改性硅纳米线(MoS_3/SiNWs)光阴极和生物阳极组成的MPEC系统,研究了3组MPEC在不同的酸性阴极液pH和外加电压条件下的产氢及污泥减量效果.研究结果表明,MPEC在阴极液pH为1和3的条件下均能在无外加电压下自发产氢;pH=1的MPEC-1实验中平均产氢速率为(0.66±0.02) mL·h~(-1),约是pH=3的MPEC-2实验平均产氢速率的1.5倍,但阴极过酸的条件限制了其实际应用; pH为3、外加0.2 V电压的MPEC-3与MPEC-2相比,产氢周期由15 h增加到40 h,平均产氢速率由(0.44±0.05) mL·h~(-1)提高到(0.52±0.04) mL·h~(-1),污泥TCOD、SCOD、TSS、VSS的降解率分别可达53.96%、70.18%、38.21%和61.76%.可见本文构建的MPEC系统是一种有前景的利用太阳能进行废物处理和资源化的新技术.
        Hydrogen is an ideal clean energy resource. Microbial photoelectrochemical cell(MPEC) which can realize simultaneous wastes treatment and hydrogen generation has attracted great attention in recent years. In this study, we constructed a MPEC system consisting of a molybdenum sulfide modified silicon nanowire(MoS_3/SiNWs) photocathode and a biocatalytic anode. Residual sludge was used as the substrate. Three experiments were carried out to study the effects of acidic catholyte pH and external voltage on hydrogen production and sludge reduction. The results show that MPEC system could generate hydrogen spontaneously at pH 1 &3 without external voltage. under pH 1 in MPEC-1, the average hydrogen production rate was(0.66±0.02) mL·h~(-1), which was approximately 1.5 times of that under pH 3 in MPEC-2. However, the extreme acidic conditions of catholyte limited its application. Compared with MPEC-2, by adding an additional voltage of 0.2 V at pH=3, the hydrogen production period prolonged from 15 h to 40 h, and the average hydrogen production rate increased from(0.44±0.05) mL·h~(-1) to(0.52±0.04) mL·h~(-1) in MPEC-3.The degradation efficiencies of TCOD, SCOD, TSS and VSS of the residual sludge reached 53.96%, 70.18%, 38.21% and 61.76%, respectively. It can be concluded that the MPEC system constructed in this study is a promising new technology for waste treatment and resource utilization.
引文
Chen Q Y,Liu J S,Liu Y,et al.2013.Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation[J].Journal of Power Science,238:345-349
    Cheng S,Logan B E.2007.Sustainable and efficient biohydrogen production via electrohydrogenesis[J].Proceedings of the National Academy of Sciences,104(47):18871-18873
    Franks A E,Nevin K P.2010.Microbial fuel cells,a current review[J].Energies,3(5):899-919
    Hlavsová A,Corsaro A,Raclavská H,et al.2014.The effects of varying CaO content and rehydration treatment on the composition,yield,and evolution of gaseous products from the pyrolysis of sewage sludge[J].Journal of Analytical and Applied Pyrolysis,108:160-169
    Hou Y,Abrams B L,Vesborg P C K,et al.2011.Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution[J].Nature Materials,10(6):434-438
    Jeon Y,Kim J H,Koo K,et al.2018.A photo-assisted microbial electrolysis cell for the exclusive biohydrogen production using a MoS2 -coated p-type copper oxide[J].Journal of Power Sources,373:79-84
    Liu Y,Tay J.2001.Strategy for minimization of excess sludge production from the activated sludge process[Z].England:Elsevier Inc,19:97-107
    刘充,刘文宗,王爱杰.2015.微生物电解池阳极生物膜功能菌群构建及群落特征分析[J].微生物学通报,42(5):845-852
    刘文宗.2011.有机废水微生物电解产氢研究及电极微生物功能解析[D].哈尔滨:哈尔滨工业大学
    Lu L,Williams N B,Turner J A,et al.2017.Microbial photoelectrosynthesis for self-sustaining hydrogen generation[J].Environmental Science & Technology,51(22):13494-13501
    路璐.2012.生物质微生物电解池强化产氢及阳极群落结构环境响应[D].哈尔滨:哈尔滨工业大学
    Merki D,Fierro S,Vrubel H,et al.2011.Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J].Chemical Science,2(7):1262-1267
    Qian F,Wang G,Li Y.2010.Solar-Driven microbial photoelectrochemical cells with a nanowire photocathode[J].Nano Letters,10(11):4686-4691
    Rozendal R,Hamelers H,Euverink G,et al.2006.Principle and perspectives of hydrogen production through biocatalyzed electrolysis[J].International Journal of Hydrogen Energy,31(12):1632-1640
    Tartakovsky B,Manuel M,Wang H,et al.2009.High rate membrane-less microbial electrolysis cell for continuous hydrogen production[J].International Journal of Hydrogen Energy,34(2):672-677
    Wang H,Qian F,Wang G M,et al.2013.Self-biased solar-microbial device for sustainable hydrogen generation[J].ACS Nano,7(10):8728-8735
    Wang H,Ren Z J.2013.A comprehensive review of microbial electrochemical systems as a platform technology[J].Biotechnology Advances,31(8):1796-1807
    王亚炜,肖庆聪,阎鸿,等.2013.基于微波预处理的源头污泥减量研究[J].中国给水排水,29(15):19-23
    Xie C,Nie B,Zeng L,et al.2014.Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors[J].ACS Nano,8(4):4015-4022
    杨政伟,顾莹莹,赵朝成,等.2017.土壤微生物燃料电池的研究进展及展望[J].化工学报,68(11):3995-4004
    Zang G,Sheng G,Shi C,et al.2014.A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production[J].Energy & Environmental Science,7(9):3033-3039

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700