用户名: 密码: 验证码:
原位电热脱附技术在某有机污染场地修复中的应用效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application effect of in-situ electric thermal desorption technology used in remediation at an organics-contaminated site
  • 作者:迟克宇 ; 李传维 ; 籍龙杰 ; 闫利刚 ; 刘鹏 ; 李书鹏 ; 韦云霄
  • 英文作者:CHI Keyu;LI Chuanwei;JI Longjie;YAN Ligang;LIU Peng;LI Shupeng;WEI Yunxiao;Beijing Construction Engineering Group Environmental Remediation Co.Ltd.;National Engineering Laboratory for Site Remediation Technologies;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;
  • 关键词:热传导技术 ; 原位修复 ; 有机污染物 ; 土壤和地下水修复
  • 英文关键词:heat conduction technique;;in-situ remediation;;organic-contaminated site;;soil and groundwater remediation
  • 中文刊名:环境工程学报
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:北京建工环境修复股份有限公司;污染场地安全修复技术国家工程实验室;中国科学院生态环境研究中心城市与区域国家重点实验室;
  • 出版日期:2019-08-09 17:05
  • 出版单位:环境工程学报
  • 年:2019
  • 期:09
  • 基金:政府间国际科技创新合作重点专项(2016YFE0102000)
  • 语种:中文;
  • 页:33-43
  • 页数:11
  • CN:11-5591/X
  • ISSN:1673-9108
  • 分类号:X53
摘要
以某退役化学试剂厂土壤及地下水中氯乙烯、顺-1,2-二氯乙烯、苯、氯苯为目标污染物,基于电热脱附技术开展了中试规模的修复研究。结果表明:经电热脱附处理后,土壤中氯乙烯、氯苯的平均去除率分别达到100%、99%,均低于北京市《场地土壤环境风险评价筛选值》中污染场地(住宅用地)中土壤筛选值;地下水中氯乙烯、顺-1,2-二氯乙烯、苯、氯苯的平均去除率分别为90.5%、93.5%、96.4%、99.3%。此外,加热井设计间距对土壤温度变化有明显影响,间距为3.0 m的加热井布设方案下的升温时间短且升温效果好,优于间距为4.0 m的加热井布设方案,但两者均可达到去除污染物的目标;加热边界有效热传递范围可达2.0 m;止水帷幕与加热边界的最佳间距至少为3.0 m;目标温度越高,热脱附时间越长,热脱附效率则越高。同时,还讨论了土壤含水率及渗透性等因素对脱附效果的影响。电热脱附技术对修复氯代烃类有机物污染场地具有良好的效果,可进行大规模的工程应用。
        In this study, vinyl chloride, cis-1, 2-dichloroethylene, benzene in the chlorobenzene-contaminated soil and the corresponding groundwater from a retired chemical reagent factory were taken as the objects, the pilot test of in-situ electric thermal desorption technique was conducted to treat them. The results revealed that the average removal rates of vinyl chloride and chlorobenzene from the treated soil with in-situ electric thermal desorption reached 100% and 99%, respectively, the corresponding residual contents in the treated soils were lower than the screening levels for soil environmental risk assessment of sites(residential land) in Beijing. The average removal rates of vinyl chloride, cis-1, 2-dichloroethylene, benzene and chlorobenzene from groundwater were 90.5%, 93.5%, 96.4% and 99.3%, respectively. The distance between heating wells had the effect on the temperature variation. At the distance of 3.0 m, the heating time was shorter and the heating effect was better than that at the distance of 4.0 m, while both of them could achieve the goal of contaminants removal. The effective heat transfer range of the heating boundary reached 2.0 m, and the optimal spacing between the waterresisting curtain and the heating boundary was determined at least 3.0 m. The removal efficiency was positively correlated with heating temperature and thermal desorption time. Both longer time and higher efficiency for the thermal desorption occurred when higher target temperature was set. Meanwhile, the effects of soil moisture and porosity on the removal efficiency were discussed. The results indicate that the in-situ electric thermal desorption technology can be applied to remediate the site contaminated by chlorinated hydrocarbon organic pollutants in the large-scale practice.
引文
[1]吴嘉茵,方战强,薛成杰,等.我国有机物污染场地土壤修复技术的专利计量分析[J].环境工程学报,2019,13(8):2015-2024.
    [2]骆永明.中国污染场地修复的研究进展、问题与展望[J].环境监测管理与技术,2011,23(3):1-6.
    [3]王艳伟,李书鹏,康绍果,等.中国工业污染场地修复发展状况分析[J].环境工程,2017,35(10):175-178.
    [4]宋昕,林娜,殷鹏华.中国污染场地修复现状及产业前景分析[J].土壤,2015,47(1):1-7.
    [5]YANG H,HUANG X,THOMPSON J R,et al.China’s soil pollution:Urban brownfields[J].Science,2014,344(6185):691-692.
    [6]张学良,廖鹏辉,李群,等.复杂有机物污染地块原位热脱附修复技术的研究[J].土壤通报,2018,49(4):243-250.
    [7]白利平,罗云,刘俐,等.污染场地修复技术筛选方法及应用[J].环境科学,2015,36(11):4218-4224.
    [8]陶欢,廖晓勇,阎秀兰,等.应用多属性决策分析法筛选污染场地土壤修复技术[J].环境工程学报,2017,11(8):4850-4860.
    [9]康绍果,李书鹏,范云.污染地块原位加热处理技术研究现状与发展趋势[J].化工进展,2017,36(7):2621-2631.
    [10]MYERS K F,KARN R A,ENG D Y,et al.In situ thermal desorption of VOCs in vadose zone soils[J].Field Analytical Chemistry&Technology,2015,2(3):163-171.
    [11]KUNKEL A M,SEIBERT J J,ELLIOTT L J,et al.Remediation of elemental mercury using in situ thermal desorption(ISTD)[J].Environmental Science&Technology,2006,40(7):2384-2389.
    [12]WANG N,PENG S,CHEN J J.Steam and air co-injection in removing TCE in 2D-sand box[J].Environmental Science,2014,35(7):2785.
    [13]BETZ C,FARBERL A,GREEN C M,et al.Removing volatile and semi-volatile contaminants from the unsaturated zone by injection of a steam/air-mixture[C]//University of Edinburgh.Contaminated Soil’98.Proceedings of the Sixth International FZK/TNO Conference on Contaminated Soil,Edinburgh,1998:575-584.
    [14]OBERLE D,CROWNOVER E,KLUGER M.In situ remediation of 1,4-dioxane using electrical resistance heating[J].Remediation Journal,2015,25(2):35-42.
    [15]BEYKE G,FLEMING D.In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating[J].Remediation Journal,2010,15(3):5-22.
    [16]IBEN I E T,EDELSTEIN W A,SHELDON R B,et al.Thermal blanket for in-situ remediation of surficial contamination:Apilot test[J].Environmental Science&Technology,1996,30(11):3144-3154.
    [17]BAKER R S,LACHANCE J,HERON G.In-pile thermal desorption of PAHs,PCBs and dioxins/furans in soil and sediment[J].Land Contamination&Reclamation,2006,14(2):620-624.
    [18]HERON G,LACHANCE J,BAKER R.Removal of PCE DNAPL from tight clays using in situ thermal desorption[J].Groundwater Monitoring&Remediation,2013,33(4):31-43.
    [19]HERON G,PARKER K,FOURNIER S,et al.World’s largest in situ thermal desorption project:Challenges and solutions[J].Ground Water Monitoring&Remediation,2015,35(3):89-100.
    [20]中华人民共和国环境保护部.土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱-质谱法:HJ 605-2011[S].北京:中国环境科学出版社,2011.
    [21]中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水标准检验方法有机物指标:GB/T 5750.8-2006[S].北京:中国标准出版社,2006.
    [22]北京市质量技术监督局.场地土壤环境风险评价筛选值:DB11/T 811-2011[S].北京,2011.
    [23]北京市质量技术监督局.污染场地挥发性有机物调查与风险评估技术导则:DB11/T 1278-2015[S].北京,2015.
    [24]HERON G,PARKER K,GALLIGAN J,et al.Thermal treatment of eight CVOC source zones to near nondetect concentrations[J].Ground Water Monitoring and Remediation,2009,29(3):56-65.
    [25]赵涛,马刚平,周宇,等.多环芳烃类污染土壤热脱附修复技术应用研究[J].环境工程,2017,35(11):178-181.
    [26]王瑛,李扬,黄启飞,等.温度和停留时间对DDT污染土壤热脱附效果的影响[J].环境工程,2012,30(1):116-120.
    [27]HERON G,VAN ZUTPHEN M,CHRISTENSEN T H,et al.Soil heating for enhanced remediation of chlorinated solvents:Alaboratory study on resistive heating and vapor extraction in a silty,low-permeable soil contaminated with trichloroethylene[J].Environmental Science&Technology,1998,32(10):1474-1481.
    [28]张攀,高彦征,孔火良.污染土壤中硝基苯热脱附研究[J].土壤,2012,44(5):801-806.
    [29]孙磊,蒋新,周健民,等.五氯酚污染土壤的热修复初探[J].土壤学报,2004,41(3):462-465.
    [30]FISCHER U,SCHULIN R,KELLER M.Experimental and numerical investigation of soil vapor extraction[J].Water Resources Research,1996,32(12):3413-3427.
    [31]ALBERGARIA J T,DELERUE-MATOS C.Soil vapor extraction in sandy soils:Influence of airflow rate[J].Chemosphere,2008,73(9):1557-1561.
    [32]高国龙,蒋建国,李梦露.有机物污染土壤热脱附技术研究与应用[J].环境工程,2012,30(1):128-131.
    [33]王奕文,马福俊,张倩,等.热脱附尾气处理技术研究进展[J].环境工程技术学报,2017,7(1):52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700