用户名: 密码: 验证码:
全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects on Runoff Above the Cuntan Station Area in the Yangtze River Basin Under the 1.5℃ and 2.0℃ Global Warming
  • 作者:阮甜 ; 查芊郁 ; 杨茹 ; 高超
  • 英文作者:RUAN Tian;ZHA Qian-yu;YANG Ru;GAO Chao;College of Geography and Tourism,Anhui Normal University;Department of Geography & Spatial Information Techniques,Ningbo University;
  • 关键词:长江寸滩站以上流域 ; 水文模型 ; 全球气候模式 ; 径流
  • 英文关键词:above the Cuntan station in the Yangtze River basin;;hydrological model;;global climate model;;runoff
  • 中文刊名:长江流域资源与环境
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:安徽师范大学地理与旅游学院;宁波大学地理与空间信息技术系;
  • 出版日期:2019-02-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41571018,41871024)
  • 语种:中文;
  • 页:170-178
  • 页数:9
  • CN:42-1320/X
  • ISSN:1004-8227
  • 分类号:P333.1
摘要
基于多领域间影响模型比较计划推荐使用的4个全球气候模式GCM数据(GFDL、Had、IPSL和MIROC),分别驱动SWIM、SWAT、HBV和VIC水文模型模拟长江寸滩站以上流域径流量,研究全球升温1. 5℃和2. 0℃情景下研究区径流量变化。研究表明:(1)在全球升温1. 5℃时,水文模型和GCMs模拟的年径流量增幅分别在5. 5%~8. 3%和3. 5%~11. 4%之间;在全球升温2. 0℃时,水文模型模拟的径流量增幅在4. 8%~6. 7%,IPSL模拟的年径流量呈微弱减少趋势,HAD和MIROC模拟的年径流量分别增加6. 7%和19%。来自GCMs的不确定性分别是来自水文模型的2. 6和2. 1倍;(2)在两个不同升温条件下,月径流量集合平均的占比与基准期各月径流量的占比表现出高度一致性,但是升温1. 5℃和2. 0℃时的月最大径流量占比分别为47. 8%和40. 5%,表明在未来升温时段内,月径流量占比变化并不显著,但是极端月径流的变化较大;(3)全球升温1. 5℃时,枯、丰水期日径流量增幅分别为3%和10%,但枯、丰水期径流贡献率变化幅度都不大。全球升温2. 0℃时,枯、丰水期增幅分别为3. 6%和8%,但枯、丰水期径流贡献率都呈下降趋势。全球升温1. 5℃和2. 0℃时,50年一遇(P=2%)的洪水流量,将分别比基准期增加26. 3%和20. 7%。基准期50年一遇的洪水将可能变成20年一遇,多年平均最大日径流量较基准期也有增加。
        Four Global Climate Model( GCM) data( GFDL,Had,IPSL and MIROC) recommended by the Inter-Sectoral Impact Model Inter-comparison Project drive SWIM,SWAT,HBV and VIC hydrological models to simulate runoff above the Cuntan hydrological station in the Yangtze River and to study the runoff changes under the global warming of 1. 5℃ and 2. 0℃. The results showed that:( 1) In the 1. 5℃ warming period,the hydrological model and GCMs simulated annual runoff increases of 5. 5% ~ 8. 3% and 3. 5% ~ 11. 4%,respectively; in the 2. 0℃ warming period the hydrological model simulated a runoff increase of 4. 8% to 6. 7%.The IPSL simulated annual runoff showed a slight decrease,and the annual runoffs simulated by HAD and MIROC increased by 6. 7% and 19%,respectively. The uncertainties from GCMs are 2. 6 and 2. 1 times that of hydrological models,respectively.( 2) Under the conditions of two different global warming,the proportion of the monthly runoff collection averages is highly consistent with the proportion of monthly runoff during the reference period,but the proportion of the monthly maximum runoff under 1. 5℃ and 2. 0℃ global warming was47. 8% and 40. 5% respectively,indicating that the monthly runoff contribution did not change significantly in the future warming period,but the extreme monthly runoff changed significantly.( 3) Under 1. 5℃ global warming,daily runoff increases in the dry and wet periods are 3% and 10%,but the change rates of runoff in the dry and wet periods are not large. Under 2. 0℃ global warming,the increase in the dry season and the wet season was3. 6% and 8%,respectively,but the contribution rates of runoff in the dry and wet periods all showed a downward trend. Under 1. 5℃ and 2. 0℃ global warming,the flood flow once in 50 years( P = 2%) will increase by 26. 3% and 20. 7% respectively over the base period. The floods in the 50-year period of the reference period will likely become once in 20 years,and the average annual maximum runoff volume for many years will also increase over the reference period.
引文
[1] IPCC. Climate change 2013:The physical science basis:Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[C]. Cambridge:Cambridge University Press,2013.
    [2] FIELD C B,BARROS V,STOCKER T F,et al. Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change[J]. Journal of Clinical Endocrinology&Metabolism,2012,18(6):586-599.
    [3] JIANG T,CHEN Y Q,XU C Y,et al. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin,South China[J]. Journal of Hydrology,2007,336(3-4):316-333.
    [4]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007:80-95.ZHANG J Y,WANG G Q. Studies of climate change impact on Water Resources[M]. Beijing:Science Press,2007:80-95.
    [5] WANG S. MCGRATH R,SEMMLER T,et al. The impact of the climate change on discharge of Suir River Catchment(Ireland)under different climate scenarios[J]. Nat Hazards Earth Syst Sci,2006,6(3):387-395.
    [6] BATES B C,KUNDZEWICZ Z W,WU S,et al. Climate change and water[R]. Technical paper of the Intergovernmental Panel on Climate Change,IPCC Secretariat,2008:210.
    [7] CAO L,ZHANG Y,SHI Y. Climate change effect on hydrological processes over the Yangtze River basin[J]. Quaternary International,2011,244(2):202-210.
    [8] SU B,HUANG J,ZENG X,et al. Impacts of climate change on streamflow in the upper Yangtze River basin[J]. Climatic Change,2016,141(3):1-14.
    [9]肖恒,陆桂华,吴志勇,等.珠江流域未来30年洪水对气候变化的响应[J].水利学报,2013,44(12):1409-1419.XIAO H,LU G H,WU Z Y,et al. Flood response to climate change in the Pearl River basin for the next three decades[J].Journal of Hydraulic Engineering,2013,44(12):1409-1419.
    [10]徐影,周波涛,吴婕,等. 1. 5~4℃升温阈值下亚洲地区气候变化预估[J].气候变化研究进展,2017,13(4):306-315.XU Y,ZHOU B T,WU J,et al. Asian climate change in response to four global warming targets[J]. Advances in Climate Change Research,2017,13(4):306-315.
    [11] LIU L L,XU H M,WANG Y,et al. Impacts of 1. 5℃and 2℃global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change,2017,145(10):1-14.
    [12]王安乾,苏布达,王艳君,等.全球升温1. 5℃与2. 0℃情景下中国极端低温事件变化与耕地暴露度研究[J].气象学报,2017,75(3):415-428.WANG A Q,SU B D,WANG Y J,et al. Variation of the extreme low temperature events and farmland exposure under global warming of 1. 5℃and 2. 0℃[J]. Acta Meteorologica Sinica,2017,75(3):415-428.
    [13]孔莹,王澄海.全球升温1. 5℃时北半球多年冻土及雪水当量的响应及其变化[J].气候变化研究进展,2017,13(4):316-326.KONG Y,WANG D H. Responses and changes in the permafrost and snow water equivalent in the northern hemisphere under a scenario of 1. 5℃warming[J]. Advances in Climate Change Research,2017,13(4):316-326.
    [14] ZHAN M J,LI X C,SUN H M,et al. Changes of extreme maximum temperature events and population exposure in China under global warming of 1. 5℃and 2. 0℃:Analysis using a regional climate model COSMO-CLM[J]. Journal of Meteorological Research,2018,32(1):99-112.
    [15] ZENG X,KUNDZEWICZ Z W,Zhou J,et al. Discharge projection in the Yangtze River basin under different emission scenarios based on the artificial neural networks[J]. Quaternary International,2012,282(1):113-121.
    [16]刘俸霞,王艳君,赵晶,等.全球升温1. 5℃与2. 0℃情景下长江中下游地区极端降水的变化特征[J].长江流域资源与环境,2017,26(5):778-788.LIU F X,WANG Y J,ZHAO J,et al. Variations of the extreme precipitation under the global warming of 1. 5℃and 2. 0℃in the mid-lower reaches of the Yangtze River basin[J]. Resources and Environment in the Yangtze Basin,2017,26(5):778-788.
    [17]胡婷,孙颖,张学斌.全球1. 5和2℃温升时的气温和降水变化预估[J].科学通报,2017,62(26):3098-3111.HU T,SUN Y,ZHANG X B. Temperature and precipitation projection at 1. 5 and 2℃increase in global mean temperature[J]. Chinese Science Bulletin,2017,62(26):3098-3111.
    [18]郝莹,马京津,安晶晶,等.全球1. 5℃和2. 0℃升温下潮白河流域气候和径流量变化预估[J].气候变化研究进展,2018,14(2):237-246.HAO Y,MA J J,AN J J,et al. Projected changes in climate and river discharge in the Chaobai River basin under 1. 5℃and2. 0℃global warming[J]. Advances in Climate Change Research,2018,14(2):237-246.
    [19] WANG Y,LIAO W,DING Y,et al. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes[J]. Quaternary International,2015,s(380-381):187-196.
    [20] BRAUD I,ROUX H,ANQUETIN S,et al. The use of distributed hydrological models for the gard 2002 flash flood event:analysis of associated hydrological processes[J]. Journal of Hydrology,2010,394(1-2):162-181.
    [21] HAGEMANN S,CHEN C,CLARK D B,et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models[J]. Earth System Dynamics,2013,4(1):129-144.
    [22] HEMPEL S,FRIELER K,WARSZAWSKI L,et al. A trendpreserving bias correction-the ISI-MIP approach[J]. Earth System Dynamics,2013,4(2):219-236.
    [23] HUANG W R,WANG S Y S. Future changes in propagating and non-propagating diurnal rainfall over East Asia[J]. Climate Dynamics,2017,49(1-2):375-389.
    [24] MARX A,KUMAR R,THOBER S,et al. Climate change alters low flows in Europe under global warming of 1. 5,2,and 3degrees C[J]. Hydrology and Earth System Sciences,2018,22(2):1017-1032.
    [25] MAHMOOD R,JIA S. An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin,Pakistan,and India,using CMIP5 GCMs[J]. Theoretical and Applied Climatology,2017,130(3-4):725-734.
    [26] MOSS R H,EDMONDS J A,HIBBARD K A,et al. The next generation of scenarios for climate change research and assessment[J]. Nature,2010,463(7282):747-756.
    [27] VUUREN D P V,EDMONDS J,KAINUMA M,et al. The representative concentration pathways:an overview[J]. Climatic Change,2011,109(1-2):5-31.
    [28] THOMSON A M,CALVIN K V,SMITH S J,et al. RCP4. 5:a pathway for stabilization of radiative forcing by 2100[J]. Climatic Change,2011,109(1-2):77.
    [29] KRYSANOVA V,WECHSUNG F,ARNOLD J,et al. SWIM(Soil and Water Integrated Model),User Manual[M]. Potsdam:Potsdam Institute for Climate Impact Research,2000.
    [30]王中根,朱新军,夏军,等.海河流域分布式SWAT模型的构建[J].地理科学进展,2008,27(4):1-6.WANG Z G,ZHU X J,XIA J,et al. Study on distributed hydrological model in Hai River basin[J]. Progress in Geography,2008,27(4):1-6.
    [31] BERGSTR9M S,SINGH,V P. The HBV model[J]. 1995.
    [32] XU L,WOOD E F,LETTENMAIER D P. Surface soil moisture parameterization of the VIC-2L model:Evaluation and modification[J]. Global&Planetary Change,1996,13(1):195-206.
    [33] LIANG X,LETTENMAIER D P,WOOD E F,et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research Atmospheres,1994,99(7):14415-14428.
    [34] NASH J E,SUTCLIFFE J V. River flow forecasting through conceptual models part I—A discussion of principles[J]. Journal of Hydrology,1970,10(3):282-290.
    [35] CHEN J,GAO C,ZENG X,et al. Assessing changes of river discharge under global warming of 1. 5℃and 2℃in the upper reaches of the Yangtze River Basin:Approach by using multipleGCMs and hydrological models[J]. Quaternary International,2017(453):63-73.
    [36]沈永平,王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土,2013,35(5):1068-1076.SHEN Y P,WANG Y G. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology,2013,35(5):1068-1076.
    [37]王绍武,罗勇,赵宗慈,等.新一代温室气体排放情景[J].气候变化研究进展,2012,08(4):305-307.WANG S W,LUO Y,ZHAO Z C,et al. New generation of scenarios of greenhouse gas emission[J]. Advances in Climate Change Research,2012,8(4):305-307.
    [38] SUN H M,WANG Y J,ZHAO N,et al. Exposure of population to droughts in the Haihe River Basin under global warming of 1. 5℃and 2. 0℃scenarios[J]. Quaternary International,2017(453):74-84.
    [39]黄金龙,王艳君,苏布达,等. RCP4. 5情景下长江上游流域未来气候变化及其对径流的影响[J].气象,2016,42(5):614-620.HUANG J L,WANG Y J,SU B D,et al. Future climate change and its impact on runoff in upper reaches of the Yangtze River under RCP4. 5 scenario[J]. Meteorological Monthly,2016,42(5):614-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700