用户名: 密码: 验证码:
京津冀秋冬季工业生产热异常遥感监测探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion of Industrial Production in Beijing-Tianjin-Hebei Region Based on Thermal Anomaly Remote Sensing Monitoring during Autumn and Winter Seasons
  • 作者:邱昀 ; 李令军 ; 王新辉 ; 赵文吉 ; 鹿海峰 ; 李金香 ; 孙爽
  • 英文作者:QIU Yun;LI Ling-jun;WANG Xin-hui;ZHAO Wen-ji;LU Hai-feng;LI Jin-xiang;SUN Shuang;Beijing Environmental Monitoring Center;Capital Normal University;
  • 关键词:热异常 ; 京津冀 ; 辐射功率 ; 工业企业
  • 英文关键词:Thermal anomaly;;Beijing-Tianjin-Hebei region;;Fire radiation power;;Industrial enterprise
  • 中文刊名:环境监控与预警
  • 英文刊名:Environmental Monitoring and Forewarning
  • 机构:北京市环境保护监测中心;首都师范大学;
  • 出版日期:2019-09-30
  • 出版单位:环境监控与预警
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划基金资助项目(2018YFC0706004)
  • 语种:中文;
  • 页:108-112
  • 页数:5
  • CN:32-1805/X
  • ISSN:1674-6732
  • 分类号:X51;X87
摘要
为全面、客观掌握工业生产热排放对大气污染的影响,利用遥感手段分析了2018—2019年秋冬季京津冀工业生产热排放及其同比变化。结果显示:2018—2019年秋冬季,京津冀地区工业热异常点数量及秋冬热异常点辐射功率(FRP秋冬)较上年同期明显增加,工业生产活动规模及强度同比有所扩大,区域PM2. 5浓度呈增长趋势。根据FRP秋冬分布特点可将京津冀工业生产分为3类,密集型、分散型和稀少型。工业生产密集型城市FRP秋冬通常> 1 500 MW,较为典型的城市如唐山、邯郸,FRP秋冬可达2 000 MW以上甚至上万MW,这些城市的空气质量也相对较差;保定是工业生产分散型城市,该城市热异常点增长显著,FRP秋冬也可达2 000 MW以上,但空间分布分散;工业生产稀少型城市热异常点较少且空气质量相对较好。
        In order to monitor the regional industrial production situation comprehensively and objectively and having a better understanding of industrial emission impact,remote sensing was used to identify the thermal emission from industrial production and growth in Beijing-Tianjin-Hebei region(BTH region). The distribution and comparative changes of thermal anomalies were analyzed in BTH region during Autumn and Winter Period from 2018 to 2019. The result showed that the number and fire radiation power(FRP) of industrial thermal anomalies increased significantly from 2018 to 2019,compared the same period of last year. The scale and intensity of industrial production expanded and the regional PM2. 5 concentration also increased. According to the distribution characteristics of FRP,industrial production in BTH region can be divided into three types: intensive,dispersal and rare. The FRP value in industrial intensive cities is usually higher than 1 500 MW. In typical intensive cities such as Tangshan and Handan,the FRP value can exceed 2 000 MW or even ten thousands MW. The air quality of these cities is also relatively poor. Dispersed city like Baoding,its thermal anomaly points have increased significantly,and the FRP value can reach more than 2 000 MW,but the spatial distribution is scattered. Industrial sparse cities have fewer thermal anomalies and generally have relatively good air quality.
引文
[1]蒋春来,袁宋,晓晖袁,等.2010—2015年我国水泥工业NOx排放清单及排放特征[J].环境科学,2018,11(39):4841-4848.
    [2]韩龙,常旭.工业污染源真实排放量核算方法与应用[J].工程建设与设计,2017(8):136-137.
    [3]盛文龙,王亮.固定污染源废气污染物排放总量核算方法探讨[J].石油石化绿色低碳,2018,3(3):65-69.
    [4] ICHOKU C,GIGLIO L,WOOSTER M J,et al. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy[J]. Remote Sensing of Environment,2008,112(6):2950-2962.
    [5] ELVIDGE C D,ZHIZHIN M,HSU F C,et al. VIIRS nightfire:Satellite pyrometry at night[J]. Remote Sensing,2013,5(9):4423-4449.
    [6] ABRAMS M. The advanced spaceborne thermal emission and reflection radiometer(ASTER):data products for the high spatial resolution imager on NASA’s Terra platform[J]. Int. J. Remote Sens,2000,21:847-859.
    [7] SCHROEDER W,OLIVA P,GIGLIO L,et al. The New VIIRS375 m active fire detection data product:Algorithm description and initial assessment[J]. Remote Sensing of Environment,2014,143(6):85-96.
    [8] CAO C,LUCCIA F J D,XIONG X,et al. Early on-orbit performance of the visible infrared lmaging radiometer suite onboard the suomi national polar-orbiting partnership(S-NPP)Satellite[J]. IEEE Transactions on Geoscience&Remote Sensing,2013,52(2):1142-1156.
    [9]王子峰,陈良富,顾行发.基于MODIS数据的华北地区秸秆焚烧监测[J].遥感技术与应用,2008,23(6):611-617.
    [10]杨珊荣,李虎,余涛,等.基于MODIS的秸秆焚烧火点识别原理及算法IDL实现[J].遥感信息,2009(2):91-97.
    [11]胡梅,齐述华,舒晓波,等.华北平原秸秆焚烧火点的MODIS影像识别监测[J].地球信息科学学报,2008,10(6):802-807.
    [12]徐迅,李建松,赵伶俐.基于VIIRS影像的秸秆焚烧火点监测方法[J].地理空间信息,2018,16(6):90-93.
    [13]翟锡丹,邢立新,元楠楠,等.热红外遥感在地热异常提取中的应用[J].安徽农业科学,2015,43(3):3-6.
    [14] ICHOKU C,GIGLIO L,WOOSTER M J,et al. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy[J]. Remote Sensing of Environment,2008,112(6):2950-2962.
    [15] GIGLIO L,CSISZAR I,JUSTICE C O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer(MODIS)sensors[J]. Journal of Geophysical Research:Biogeosciences,2006,111(G2).
    [16] XIA H,CHEN Y,QUAN J. A simple method based on the thermal anomaly index to detect industrial heat sources[J]. International Journal of Applied Earth Observation and Geoinformation,2018,73:627-637.
    [17]伯鑫,赵春丽,吴铁,等.京津冀地区钢铁行业高时空分辨率排放清单方法研究[J].中国环境科学,2015,35(8):2554-2560.
    [18]伯鑫,徐峻,杜晓惠,等.京津冀地区钢铁企业大气污染影响评估[J].中国环境科学,2017,37(5):1684-1692.
    [19]伯鑫,王刚,温柔,等.京津冀地区火电企业的大气污染影响[J].中国环境科学,2015,35(2):364-373.
    [20] LIU Y,HU C,ZHAN W,et al. Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach[J]. Remote Sensing of Environment,2017(10).
    [21]张伟,张杰,汪峰,等.京津冀工业源大气污染排放空间集聚特征分析[J].城市发展研究,2017(9):81-87.
    [22]孙爽,李令军,赵文吉,等.基于热异常遥感的冀南城市群工业能耗及大气污染[J].中国环境科学,2019,39(7):3120-3129.
    [23]北京市统计局.北京统计年鉴2018[M].北京:中国统计出版社,2018.
    [24]杨玲珠,张燕宁,刘建伟.近59年邯郸市日照时数变化特征分析[J].安徽农业科学,2015,43(11):203-206.
    [25]河北省人民政府.河北经济年鉴2018[M].北京:中国统计出版社,2018.
    [26]天津市统计局.天津统计年鉴2018[M].北京:中国统计出版社,2018.
    [27]崔立明,赵春丽,周春瑶.京津冀地区重点耗煤行业大气污染物排放清单研究[J].中国环境管理,2018(3):27-31.
    [28]徐辉.京津冀城市群:探索生态文明理念下的新型城镇化模式[J].北京规划建设,2014(5):39-44.
    [29]张霞,孟琛琛,王丽涛,等.邯郸市大气污染特征及变化趋势研究[J].河北工程大学学报(自然科学版),2015(4):69-74.
    [30]张霞.2013-2014年邯郸市大气污染特征及变化研究[D].邯郸:河北工程大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700