用户名: 密码: 验证码:
Fenton体系氧化降解气相苯的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxidative degradation of gaseous benzene by Fenton reagent
  • 作者:田立江 ; 李杰 ; 王艳芳 ; 李英杰 ; 王丽萍 ; 李多松
  • 英文作者:TIAN Li-jiang;LI Jie;WANG Yan-fang;LI Ying-jie;WANG Li-ping;LI Duo-song;School of Environment Science & Spatial Informatics,China University of Mining and Technology;Shanghai Institute of Environmental Sciences;Gongyi Branch of Zhengzhou Ecology and Environment Bureau;
  • 关键词:环境工程学 ; 挥发性有机物 ; 气相苯 ; Fenton体系 ; 响应面法 ; 交互作用
  • 英文关键词:environmental engineering;;volatile organic compounds(VOCs);;gaseous benzene;;Fenton reagent;;response surface method;;reciprocal effect
  • 中文刊名:安全与环境学报
  • 英文刊名:Journal of Safety and Environment
  • 机构:中国矿业大学环境与测绘学院;上海市环境科学研究院;郑州市生态环境局巩义分局;
  • 出版日期:2019-08-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(51778612)
  • 语种:中文;
  • 页:290-295
  • 页数:6
  • CN:11-4537/X
  • ISSN:1009-6094
  • 分类号:X701
摘要
利用Fenton体系的强氧化性,考察了Fenton体系pH值、H_2O_2体积分数和FeSO_4质量浓度3个单因素对气相苯降解性能的影响。结果表明,随pH值、H_2O_2体积分数和FeSO_4质量浓度增加,对气相苯的去除率均呈现先升高后降低的趋势。当H_2O_2体积分数为0. 53%、FeSO_4质量浓度为0. 53 mg/mL不变,调节pH=3时,苯去除率达到最高,为95. 23%;当pH=3、FeSO_4质量浓度为0. 53 mg/mL不变,调节H_2O_2体积分数为0. 79%时,苯去除率达到最高,为96. 88%;当pH=3、H_2O_2体积分数为0. 79%不变,FeSO_4质量浓度为0. 79 mg/mL时,苯去除率达到最高,为95. 31%。利用BBD法和Design Expert软件设计3因素3水平交互影响试验,基于试验结果建立函数关系,通过函数关系设计的三维响应面和等高图表明,FeSO_4质量浓度、H_2O_2体积分数分别与pH值对苯降解的交互作用不显著,而FeSO_4质量浓度与H_2O_2体积分数对苯降解的交互作用显著。
        This paper intends to choose the gaseous benzene as the target object to make a systematic investigation of its degradation properties affected by taking the pH value,H_2 O_2 volume ratio and FeSO_4 mass as the typical volatile organic compound.Through the single-facor testing,it would be possible for the experiments to make an objective estimation through the oxidative ability of Fenton reagent in reliance of our self-designed bubble column reactor. The results of the testing experiment indicate that the removing efficiency of gaseous benzene tends to rise first and then decline with the increase of pH value,H_2 O_2 volume ratio and FeSO_4 mass concentration from 1 to 5, 0. 27% to1. 32%,0. 28 mg/mL to 1. 32 mg/mL,respectively. On the other hand,the single-factor experiment of pH value shows that the removing efficiency of the gaseous benzene can reach its highest rate of 95. 23% on the conditions with the pH value being 3 whereas the H_2 O_2 volume ratio can be kept at 0. 53% and the FeSO_4 mass concentration is kept at 0. 53 mg/mL constant.Moreover,the single-factor experiment of H_2 O_2 volume ratio shows that the removing efficiency of the gaseous benzene can be made to reach its maximum rate of 96. 88%,on the condition when the H_2 O_2 volume ratio is 0. 79% with the pH value being kept at 3 and FeSO_4 mass concentration being 0. 53 mg/mL constant. Furthermore,the single-factor experiment of FeSO_4 mass concentration proves that the removing efficiency of the gaseous benzene can be made to its maximum rate of 95. 31% on the condition of FeSO_4 mass concentration being 0. 79% with the pH value of 3 and H_2 O_2 volume ratio of 0. 79% unchanged. Therefore,the key to the success of the experiment is to choose the pH value,H_2 O_2 volume ratio and the FeSO_4 mass concentration rate as the optimistic combination. At the same time,it is also necessary to lay out and execute the reciprocal effect experiment scheme with 3 factors and 3 levels by using the BBD technique and the expert software designed. What is more,the experimental results can also help to establish the functional relation,which can also serve as the basis for designing the 3-D response surface and contour maps. And,though the reciprocal effect may not be inapparent between the pH value with FeSO_4 mass concentration and H_2 O_2 volume ratio strictly,it should be apparent between FeSO_4 mass concentration and the H_2 O_2 volume ratio.
引文
[1] YIN Yongquan(殷永泉),SU Yuancheng(苏元成),YOU Lina(由丽娜),et al. Photocatalytic degradation of gas phase benzene and toluene over multicomposite Ti O2catalyst[J]. Environmental Science(环境科学),2007,28(6):1188-1192.
    [2] SHANG Hairu(尚海茹),FENG Changgen(冯长根),SUN Liang(孙良),et al. On the preparation of H4Si W12O40/Ti O2and its photocatalytic activity for the trinitrotoluene decomposition[J]. Journal of Safety and Environment(安全与环境学报),2016,16(4):288-292.
    [3] SONG Tiantian(宋甜甜).Effect of surfactant on styrene removal from waste gas streams in biotrickling filters(表面活性剂在生物滴滤器净化苯乙烯气体中的作用)[D].Changsha:Hunan University,2012.
    [4] JIA Yongqin(贾永芹),ZHANG Xiaojing(张晓晶).Catalytic oxidation of benzene over zeolites supported Co Oxcatalysts[J]. Environmental Science&Technology(环境科学与技术),2018,41(9):28-32.
    [5] CHEN Rong(陈荣),LI Dongni(李冬妮),LI Yunxia(李云霞),et al. Photocatalytic degradation of benzene by using phosphotungstic acid/attapulgite composite catalysts[J]. Environmental Science&Technology(环境科学与技术),2017,40(S1):77-81.
    [6] XIAO Yutang(肖羽堂),XU Jianghua(许建华).Application of Fenton reagent in pretneating reractory dinitrochlorobenzene wastewater[J]. Chongqing Environmental Science(重庆环境科学),1997,19(6):33-36.
    [7] KUNAI A,HATA S,ITO S,et al. The role of oxygen in the hydroxylation reaction of benzene with Fenton’s reagent-18O tracer study[J]. Journal of the American Chemical Society,1986,108:6012-6016.
    [8] LIU Jia(刘佳),SONG Ziling(宋子岭),CONG Xin(丛鑫),et al. Measurement and determination of BTEX in the soil by the headspace-gas chromatography[J]. Journal of Safety and Environment(安全与环境学报),2011,11(6):98-101.
    [9] GAO Aifang(高爱舫),LI Aiguo(李爱国),ZHANG Ying(张莹),et al. Application of response surface methodology for optimization of US/UV/Fenton combination process for antibiotic pharmaceutical wastewater[J].Journal of Safety and Environment(安全与环境学报),2014,14(3):180-183.
    [10] WEI Yanyan(魏岩岩).Comparative studies on organic gas absorbing wastewater treatment by electrolysis and Fenton reagent(电解法、Fenton试剂法处理有机废气吸收液的比较研究)[D]. Hangzhou:Zhejiang University,2006.
    [11] ZHAO Yi,HAO Runlong,GUO Qing,et al. Simultaneous removal of SO2and NO by a vaporized enhancedFenton reagent[J]. Fuel Processing Technology,2015,137:8-15.
    [12] KANG Ying(康颖).Artificial generation of oxidative radical for the abatement of gaseous pollutants and its mechanism(人工环境下氧化性自由基对气态污染物的作用机理及应用)[D]. Hangzhou:Zhejiang University,2008.
    [13] SILVA S S,CHIAVONe-FILHO O,NETO E L B,et al.Integration of processes induced air flotation and p H otoFenton for treatment of residual waters contaminated with xylene[J]. Journal of Hazardous Materials,2012,199/200:151-157.
    [14] GAJANAN B,GANAPATI D. Synthesis,characterization and application of iron-aluminate nodules in advanced Fenton’s oxidation process[J]. Journal of Environmental Chemical Engineering, 2015, 3:2010-2021.
    [15] KYUNGHOON C,SUNGJUN B,WOOJIN L. Degradation of off-gas toluene in continuous pyrite Fenton system[J]. Journal of Hazardous Materials, 2014, 280:31-37.
    [16] WANG Liping(王利平),LI Xiangmei(李祥梅),SHEN Xiaolong(沈肖龙),et al. Optimization of 1-naphthol wastewater treatment by Fenton reagent using response surface methodology[J]. Chinese Journal of Environmental Engineering(环境工程学报),2015,9(4):1797-1802.
    [17] LAO Yuanwen(劳苑雯),ZHU Yun(朱云),CAREY J,et al. Research and development of regional air pollution control decision support tool based on response surface model[J]. Acta Scientiae Circumstantiae(环境科学学报),2012,32(8):1913-1922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700