用户名: 密码: 验证码:
2种植物浮床对含抗生素养殖废水的净化效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Purification Effects of Two Floating Plant Beds on Antibiotics-containing Livestock Wastewater
  • 作者:陈金峰 ; 刘海林 ; 邹春萍 ; 刘可星 ; 张佩霞 ; 孙映波
  • 英文作者:Chen Jinfeng;Liu Hailin;Zou Chunping;Liu Kexing;Zhang Peixia;Sun Yingbo;Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences;Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs;College of Natural Resources and Environment, South China Agricultural University;
  • 关键词:植物浮床 ; 养殖废水 ; 营养盐 ; 磺胺嘧啶 ; 去除作用
  • 英文关键词:floating plant bed;;livestock wastewater;;nutrients;;sulfadiazine;;removal
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:广东省农业科学院环境园艺研究所广东省园林花卉种质创新综合利用重点实验室;农业农村部华南都市农业重点实验室;华南农业大学资源环境学院;
  • 出版日期:2019-06-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:03
  • 基金:广东省科技计划项目“广东省农业科学院环境园艺研究所创新能力建设”(2017A070702008);; 广州市科技计划项目“水生观赏植物—微生物燃料电池系统(AOP-SMFC)去除沉积物中磺胺嘧啶的效果与机制”(201707010341)
  • 语种:中文;
  • 页:143-149
  • 页数:7
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:X713
摘要
[目的]探讨湿地植物种类、浮床覆盖面积和处理时间3个因素对含抗生素养殖废水净化效果的影响,为高效利用湿地植物浮床技术去除养殖废水中的传统污染物和抗生素提供依据。[方法]分别利用巴拉草(Brachiaria mutica)和短叶茳芏(Cyperus malaccensis Lam. var.brevifolius)构建了植物浮床,每种植物浮床设置了20%,40%,60%这3个水面覆盖面积,监测了植物浮床在不同处理时间对养殖废水中的化学需氧量(COD)、氮磷和磺胺嘧啶的净化效果。[结果]各处理水质各指标随着运行时间持续变好:pH值变中性;溶解氧(DO)含量增加;氧化还原电位(ORP)上升;COD,氨氮(NH_3-N),总氮(TN),总磷(TP)和抗生素磺胺嘧啶(SDZ)浓度持续降低;不同植物种类对水体pH值和ORP值,DO和COD的含量无显著影响,但显著影响水体营养盐的去除;巴拉草浮床对水体中NH_3-N,TN和TP的去除效果优于短叶茳芏浮床;两种植物对SDZ的去除效率相当;总体上,60%的覆盖面积更加有利于水体中污染物的去除,但不利于DO扩散。[结论] 60%覆盖面积的巴拉草浮床,在运行47 d时,去除养殖废水中COD(88%),NH_3-N(97%),TN(89%),TP(94%)和SDZ(43%)的效果最好。
        [Objective] The effects of wetland plant species, plant coverage and treatment time on the purification of antibiotic-containing livestock waste water were investigated in order to provide the basis for utilization of wetland plant floating beds technology to efficiently remove pollutants and antibiotics from livestock waste water. [Methods] Plant floating beds were constructed using Brachiaria mutica and Cyperus malaccensis Lam. var. brevifolius, respectively. Three different plant coverage areas(20%, 40% and 60%) were set for each plant bed. The purification effects of plant floating beds on chemical oxygen demand(COD), nitrogen, phosphorus and sulfadiazine(SDZ) were monitored at different treatment times. [Results] The water quality was improved with the treatment time: pH value became neutral, dissolved oxygen(DO) content and oxidation reduction potential(ORP) increased, and the concentrations of COD, nutrients and SDZ decreased. Plant species had no significant effect on water pH value, DO, ORP and COD, but had significant effect on water nutrient removal. B. mutica performed better in the removal of ammonia nitrogen(NH_3-N), total nitrogen(TN) and total phosphorus(TP) than C. malaccensis Lam. var. brevifolius, but no significant difference was found in terms of SDZ removal between the two plant species. In general, plant beds with 60% coverage area was more conducive to the removal of pollutants in water, but was not conducive to DO diffusion. [Conclusion] The floating beds constructed by B. mutica with 60% plant coverage had the best removal efficiencies. After 47 days of operation, the floating bed simultaneously removed 88% of the COD, 97% NH_3-N, 89% TN, 94% TP and 43% of the SDZ in the wastewater.
引文
[1] 周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2007,2(3):243-251.
    [2] 陈蕊,高怀友,傅学起,等.畜禽养殖废水处理技术的研究与应用[J].农业环境科学学报,2006,25(S1):374-377.
    [3] 邓仕槐,李远伟,郑仁宏,等.畜禽养殖废水的混合处理工艺[J].环境工程,2006,24(4):29-30.
    [4] 杜龑,周北海,袁蓉芳,等.UASB-SBR工艺处理规模化畜禽养殖废水[J].环境工程学报,2018,12(2):497-504.
    [5] 郑佳伦,刘超翔,刘琳,等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J].环境化学,2017,36(1):37-47.
    [6] A Dan,Yang Yang,Dai Yunv,et al.Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J].Bioresource Technology,2013,146:363-370.
    [7] Yan Qing,Feng Guozhong,Gao Xu,et al.Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands[J].Journal of Hazardous Materials,2016,301:566-575.
    [8] Xian Qiming,Hu Lixia,Chen Hancheng,et al.Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system[J].Journal of Environmental Management,2010,91(12):2657-2661.
    [9] Nye P.Changes of pH across the rhizosphere induced by roots[J].Plant and Soil,1981,61(1/2):7-26.
    [10] Troelstra S R,Van Dijk K,Blacquière T.Effects of N source on proton excretion,ionic balance and growth of Alnus glutinosa (L.) Gaertner:Comparison of N2 fixation with single and mixed sources of NO3 and NH4[J].Plant and Soil,1985,84(3):361-385.
    [11] 狄廷均,朱毅勇,仇美华,等.水稻根系细胞膜 H+-ATPase 对铵硝营养的响应差异[J].中国水稻科学,2007,21(4):360-366.
    [12] 高大文,彭永臻,王淑莹.SBR法处理豆制品废水过程中ORP与COD的相关性[J].给水排水,2002,28(9):40-43.
    [13] 尹连庆,谷瑞华.人工湿地去除氨氮机理及影响因素研究[J].环境工程,2008,26(S1):151-155.
    [14] 李欢,吴蔚,罗芳丽,等.4种挺水植物、4种沉水植物及其组合群落去除模拟富营养化水体中总氮和总磷的作用比较[J].湿地科学,2016,14(2):163-172.
    [15] Chen Jinfeng,Xu Huilian,Sun Yingbo,et al.Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China[J].Science of the Total Environment,2016,543(PartA):197-205.
    [16] Michelini L,Reichel R,Werner W,et al.Sulfadiazine uptake and effects on Salix fragilis L.and Zea mays L.plants[J].Water,Air & Soil Pollution,2012,223(8):5243-5257.
    [17] 金彩霞,朱雯斐,郭桦,等.毫米级根际微域磺胺嘧啶的降解动态研究[J].环境科学学报,2014,34(8):2085-2093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700