用户名: 密码: 验证码:
磁性Fe_3O_4纳米粒子的液相制备新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米粒子是零维纳米材料,由于纳米尺度带来的表面效应、量子尺寸效应等使其内禀性质和外禀性质变得模糊,表现出与体相磁性材料不同的磁特性,如超顺磁性、低居里温度和高矫顽力等。Fe_3O_4纳米粒子作为一种具有反尖晶石结构的典型磁性纳米粒子,已经开始广泛应用到工业、军事、生物和医药等诸多领域。其制备方法的研究较多,但是简单实用同时便于后处理应用的却并不多见。
     本论文提出了一种制备Fe_3O_4纳米粒子的新方法——区域限制部分还原沉淀路线。首先,使用微电极电化学方法监测FeCl3-Na2SO3体系中Fe(III)被部分还原为Fe(II)的反应进程,获得满足发生化学共沉淀反应的化学计量关系时,体系的FeCl3与Na2SO3两种试剂的初始物质的量的比为3 : 1,同时获知在选定体系中约10分钟后能达到这个条件。该条件实验的意义在于,通过精确的控制反应试剂的比例,使合成反应始终按照预设的方式进行,保证了制备产物的纯度及晶型。其次,选择含有复配大分子表面活性剂的乳液作为反应体系,通过乳液稳定性的显微观察,确定了当水相、油相和表面活性剂质量比35 : 4 : 1时,乳液的稳定性较好。这个条件实验为反应在受限的体系中进行提供了基础。再次,使用测定电导率的方法,确定了在选定体系中能控制的Fe(III)离子浓度最大范围在0.15 mol·L-1左右。这个条件实验确保粒子的合成在区域限制效应发挥作用的情况下进行,保证了制备粒子的粒径分布。最后,按照三个条件实验获得的条件参数成功制备出了Fe_3O_4纳米粒子,并通过改变实验参数的方法,验证了条件实验参数的正确性,同时发现了在区域限制效应起作用的范围,能够实现粒径可控制备。整个研究内容涉及到了对电化学、配位化学和胶体与界面化学等理论知识的应用。
     区域限制部分还原沉淀路线制备的Fe_3O_4纳米粒子几乎是单分散的,这是由于在乳液体系中的大分子表面活性剂限制了核生成与核成长过程。此外,合成过程无需惰性氛围的保护,这是因为部分还原获得的Fe(II)是以配合物的形式存在,避免了氧化的发生。使用透射电镜、X-ray粉末衍射议、动态光散射粒径分析仪和振动样品磁强计对制备的磁性纳米粒子进行了表征。结果表明产物基本是纯的Fe_3O_4,形貌多为球形,具有完整的反尖晶石结构,粒子的尺寸较小,粒径分布较窄。纳米粒子的磁性能优异,在室温下粒径在15 nm左右的Fe_3O_4纳米粒子饱和磁化强度超过61.3 emu·g-1,表现出超顺磁性。
     区域限制部分还原沉淀路线可以认为是一种具备化学共沉淀法和微乳法优点的制备磁性纳米粒子的新方法。使用这种方法在普通实验室条件下就能合成高质量的Fe_3O_4纳米粒子。因此,该法具有广阔的应用空间,能够满足很多方面的应用要求,特别是在生物学和医药学领域更具有应用前景。
Magnetic nanoparticles, also called zero-dimensional magnetic nanomaterials, have unique magnetic properties, such as superparamagnetism, low Cure Point, high coercivity and etc. Such size-depended properties are quite different from the bulk magnetic materials. The surface effects and quantum effects of nanoscaled materials bring such fantastic behaviors to magnetic nanoparticles. Fe_3O_4 is a typical ferrimagnetic material with inverted spinel crystalline structure, and its ultrafine powder had been widely applied because of industrial and military purposes. Nowadays, Fe_3O_4 nanoparticles are exploring new applications in biology and medicine. The high quality magnetic nanoparticles are the foundation of such potential researches. Therefore, a lot of preparation methods had been investigated. Actually, few of them are practical in the common lab conditions. It is without saying to apply conveniently after post processing.
     This thesis reports a new approach to Fe_3O_4 nanoparticles: Partially reduced and confined precipitation route. Firstly, microelectrode electrochemical method was used to monitor the partial reduction process of ferric ion to ferrous ion in FeCl3-Na2SO3 system. The stoichiometric ratio of coprecipitation reaction was achieved when the beginning molar ratio of FeCl3 and Na2SO3 was 3:1. The system needed about 10 minutes to finish such partial reduction. The rigid control of the reagent ratio ensured the synthesis of Fe_3O_4 and avoided the occurrence of side reactions. The purity and crystalline structure of Fe_3O_4 nanoparticles were guaranteed. Secondly, an O/W emulsion was chosen as the medium of the whole reaction. The stability and dispersity of oil phase in such macromolecular surfactant emulsion had been examined by the means of fluorescent microscopic observation. The optimal constitutes of emulsion was found: the mass ratio of aqueous phase, cyclohexane (oil phase) and emulsifier was 35:4:1. Thirdly, the electrical conductivity of reagent emulsions was measured to look for the maximum concentration range of ferric ion. The confinement effect could work when the concentration was controlled around 0.15 mol·L-1. This experiment insured the narrow size distribution of synthesized nanoparticles. Finally, Fe_3O_4 nanoparticles were synthesized according to the above-mentioned three experiment findings. The validity of technological parameters was verified. The size-controlled synthesis could be achieved by altering the reagent concentration at the presence of the confinement effect. The research work related to the knowledge of electrochemistry, coordination chemistry, colloid chemistry and etc.
     The synthesized Fe_3O_4 nanoparticles were almost monodispersed because the macromolecular surfactants in the emulsion confined the nucleation and the nucleus growth. Compared with microemulsion method, the much higher concentration of reactants increased the Fe_3O_4 nanoparticle yield. The intermediate of partial reduction reaction was complex which avoided the oxidation of ferrous ion, and this made the inert atmosphere unnecessary. The transmission electron microscope, X-ray powder diffractometer, dynamic light scattering particle size analyzer and vibrating sample magnetometer were used to characterize the nanoparticles. The results showed the synthesized nanoparticles were nearly pure Fe_3O_4 with inverted spinel crystalline structure, and the size distribution was narrow. The Fe_3O_4 nanoparticles with average diameter 15 nm were superparamagnetism, and the saturation magnetization exceeded 61.3 emu·g-1 at room temperature.
     The partially reduced and confined precipitation route is derived from the traditional coprecipitation. It integrates the advantages of chemical coprecipitation and microemulsion method, and dispelled the drawbacks of them. Such method makes it possible to synthesize high quality Fe_3O_4 nanoparticles in the common lab conditions.
引文
[1] 黄德欢. 纳米技术及其应用. 第一版. 上海: 中国纺织大学出版社, 2001
    [2] Binnig G, Rohrer H, Gerber Ch, et al. Tunneling through a controllable vacuum gap. Applied Physical Letters, 1982, 42(2): 178~180
    [3] 徐辉碧. 纳米医药. 第一版. 北京: 清华大学出版社, 2004
    [4] 张立德, 牟季美. 纳米材料和纳米结构. 第一版. 北京: 科学出版社, 2001
    [5] 李学慧, 安宏, 齐锐等. 氮化铁磁流体的制备. 无机材料学报, 2003, 18(6): 1345~1350
    [6] http://www.tdk.co.jp/techmag/ferrite/grain_3/flm_dwn3.htm
    [7] Meldrum F C, Heywood B R, Mann S. Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science, 1992, 257(5069): 522~523
    [8] 熊兆贤. 无机材料研究方法. 第一版. 厦门: 厦门大学出版社, 2001
    [9] Gleiter H. Nanocrystalline materials, Progress in Materials Science, 1989, 33(4): 223~315
    [10] Grimm S, Schultz M, Barth S, et al. Flame pyrolysis – a preparation route for ultrafine pure γ–Fe2O3 powders and the control of their particle size and properties. Journal of Materials Science, 1997, 32(4): 1083~1092
    [11] Flahaut E, Agnoli F, Sloan J, et al. CCVD synthesis and characterization of Cobalt encapsulated nanoparticles. Chemistry of Materials, 2002, 14(6): 2553~2558
    [12] Osuna J, de Caro D, Amiens C, et al. Synthesis, characterization, and magnetic properties of Cobalt nanoparticles from an organometallic precursor. The Journal of Physical Chemistry, 1996, 100(35): 14571~14574
    [13] Chen Dong-Hwang, Wu Szu-Han. Synthesis of Nickel nanoparticles: Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chemistry of Materials, 2000, 12(5): 1354~1360
    [14] Sun Y P, Rollins H W, Guduru R. Preparations of Nickel, Cobalt, and Iron nanoparticles through the rapid expansion of supercritical fluid solutions (RESS) and chemical reduction. Chemistry of Materials, 1999, 11(1): 7~9
    [15] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. The Journal of the American Chemical Society, 2002, 124(28): 8204~8205
    [16] Chen M, Liu J P, Sun S. One-step synthesis of FePt nanoparticles with tunable Size.The Journal of the American Chemical Society, 2004, 126(27): 8394~8395
    [17] Zeng H, Li J, Wang Z L, et al. Bimagnetic Core/Shell FePt/Fe3O4 nanoparticles. Nano Letters, 2004, 4(1): 187~190
    [18] Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004, 126(1): 273~279
    [19] Suslick K S. Ultrasound: Its chemical, physical, and biological effects. First Edition. New York: VCH Press, 1988
    [20] Kenneth S, Suslick K S, Mingming Fang, et al. Sonochemical synthesis of Iron colloids. The Journal of the American Chemical Society, 1996, 118(47): 11960~11961
    [21] Shafi K V, Ulman A, Dyal A, et al. Magnetic enhancement of γ-Fe2O3 nanoparticles by sonochemical coating. Chemistry of Materials, 2002, 14(4): 1778~1787
    [22] Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893~3946
    [23] Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chemistry of Materials, 1996, 8(9): 2209~2211
    [24] Chen Q, Rondinone A J, Chakoumakos B C, et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation . Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 1~7
    [25] Boutonnet M, Kizling J, Stenius P, et al. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces, 1982, 5(3): 209~225
    [26] Hellweg T. Phase structures of microemulsion. Current Opinion in Colloid and Interface Science, 2002, 7(1-2): 50~56
    [27] Lopez-Quintela M A. Synthesis of nanomaterials in microemulsion: formation mechanisms and growth control. Current Opinion in Colloid and Interface Science, 2003, 8(2): 137~144
    [28] Feltin N, Pileni M P. New technique for synthesizing Iron ferrite magnetic nanosized particles. Langmuir, 1997, 13(15): 3927~3933
    [29] 张文军, 张卉芳, 李德忠. 微乳一步法合成 Fe3O4 磁流体. 应用化学, 2005, 22(7): 734~738
    [30] Carpenter E E, Kumbhar A, Wiemann J A, et al. Synthesis and magnetic properties of gold–iron–gold nanocomposites. Materials Science and Engineering A, 2001, 286(1): 81~86
    [31] Pascal C, Pascal J L, Favier, et al. Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Chemistry of Materials, 1999, 11(1):141~147
    [32] Dong W, Wu S, Chen D, et al. Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt. Chemistry Letters, 2000, (5): 496~497
    [33] Cabanas A, Poliakoff M. The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. Journal of Materials Chemistry, 2001, 11(5),1408~1416
    [34] Roh Y, Lauf R J, McMillan A D, et al. Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Communications, 2001, 118(10), 529~534
    [35] Rabelo D, Lima E C D, Reis A C, et al. Preparation of Magnetite Nanoparticles in Mesoporous Copolymer Template. Nano Letters, 2001, 1(2):105~108
    [36] 李德才. 磁性液体理论及应用. 第一版. 北京: 科学出版社, 2003
    [37] Kim Y S, Kim Y H. Application of ferro-cobalt magnetic fluid for oil sealing. Journal of Magnetism and Magnetic Materials, 2003, 267(1): 105~110
    [38] Xu C, Xu K, Gu H, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind Histidine-tagged proteins. The Journal of American Chemical Society, 2004 126(11): 3392~3393
    [39] Perez J M, O’Loughin T, Simeone F J, et al. DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents. The Journal of American Chemical Society, 2002,124(12), 2856~2857
    [40] Molday R S, Yen S P, Rembaum A. Application of magnetic microspheres in labelling and separation of cells. Nature, 1977, 268(5619): 437~438
    [41] Rembaum A, Dreyer W J. Immunomicrospheres: reagents for cell labeling and separation. Science, 1980, 208(4442): 364~368
    [42] Briscoe D M, Henault L E, Geehan C, et al. Human endothelial cell costimulation of T cell IFN-gamma production. The Journal of Immunology, 1997, 159(7): 3247~3256
    [43] Bjerke T, Nielsen S, Helgestad J, et al. Purification of human blood basophils by negative selection using immunomagnetic beads. Journal of Immunological Methods, 1993, 157(1-2): 49~56
    [44] Wilson R J. Microfabricated magnetic particles for applications to affinity binding. USA, Patent No. 5932097, 1999
    [45] Taylor J I, Hurst C D, Davies M J, et al. Application of magnetite and silica–magnetite composites to the isolation of genomic DNA. Journal of Chromatography A, 2000, 890(1): 159~166
    [46] Sonti S V, Bose A. DNA Isolation Using Avidin-Coated Magnetic Nanoclusters.Colloids and Surfaces B: Biointerfaces, 1997, 8(4-5): 199~204
    [47] 何晓晓, 王柯敏, 谭蔚泓等. 超顺磁性 DNA 纳米富集器应用于痕量寡核苷酸的富集. 高等学校化学学报, 2003, 24(1): 40~42
    [48] Karrer E E, Lincoln J E, Hogenhout S, et al. In situ isolation of mRNA from individual plant cells: creation of cell-specific cDNA libraries. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(9): 3814~3818
    [49] 朱以华, 王强斌, 古宏晨等. 表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用. 中国医学科学院学报, 2002, 24(2), 118~123
    [50] Chemla Y R, Grossman H L, Poon Y, et al. Ultrasensitive magnetic biosensor for homogenous immunoassay. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26): 14268~14272
    [51] Koelle D, Kleiner R, Ludwig F, et al. High-transition-temperature superconducting quantum interference devices. Reviews of Modern Physics, 1999,71(3): 631~686
    [52] Lange J, Kotitz R, Haller A, et al. Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2002, 252(1-3): 381~383
    [53] Gilchrist R K, Medal R, Shorey W D, et al. Selective inductive heating of lymph nodes. Annals of Surgery, 1957, 146(4): 596~606
    [54] Shinkai M, Suzuki M, Lijima S, et al. Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia. Biotechnology and Applied Biochemistry, 1994, 21(2): 125~137
    [55] Hafeli U, Schutt W, Teller J, et al. Scientific and Clinical Application of Magnetic Carriers. First Edition. New York: Plenum Press, 1997
    [56] 武振羽, 樊海明, 曹立等. 以小搏大——生物医药学中的纳米科技. 物理, 2002, 31(10): 635~641
    [57] Alexiou C, Arnold W, Klein R J, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Research, 2000, 60(23): 6641~6648
    [58] Lubbe A S, Bergemenn C, Huhnt W, et al. Preclinical experiences with magnetic drug targeting tolerance and efficacy. Cancer Research, 1996, 56(20): 4694~4701
    [59] Zhao W, Gu J, Zhang L, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core mesoporous silica shell structure. The Journal of the American Chemical Society, 2005, 127(25): 8916~8917
    [60] Zhao A, Li Q, Chen L, et al. Controlling the Kondo Effect of an adsorbed magnetic ionthrough its chemical bonding. Science, 309(5740): 1542~1544
    [61] http://www.cas.cn/html/Dir/2006/01/16/13/77/46.htm
    [62] Chen X, Zhang X E, Chai Y Q, et al. DNA optical sensor a rapid method for the detection of DNA hybridization. Biosensors & Bioelectronics, 1998, 13(3-4): 451~458
    [63] Levison P R, Badger S E, Dennis J, et al. Recent developments of magnetic beads for use in nucleic acid purification. Journal of Chromatography A, 1998, 816(1): 107~111
    [64] Wang D, He J, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots Core-Shell nanocomposite particles for cell separation. Nano Letters, 2004, 4(3): 409~413
    [65] Oka Y, Yanata K. Excitonic properties of nanostructure semimagnetic semiconductors. Journal of Luminescence, 1996, 70(1-6): 35~47
    [66] Sooklal K, Cullum B S, Angel S M, et al. Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. The Journal of Physical Chemistry, 1996, 100(11): 4551~4555
    [67] Levy L, Hochepied J F, Pileni M P. Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. The Journal of Physical Chemistry, 1996, 100(47): 18322~18326
    [68] Levy L, Feltin N, Ingert D, et al. Three dimensionally diluted magnetic semiconductor clusters Cd1-yMnyS with a Range of sizes and compositions: dependence of spectroscopic properties on the synthesis mode. The Journal of Physical Chemistry B, 1997, 101(45): 9153~9160
    [69] Mikulec F V, Kuno M, Bennati M, et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. The Journal of the American Chemical Society, 2000, 122(11): 2532~2540
    [70] Norris D J, Yao N, Charnock F T, et al. High-quality manganese-doped ZnSe nanocrystals. Nano Letters, 2001, 1(1): 3~7
    [71] Gu H, Zheng R, Zhang X, et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of Quantum Dot and magnetic nanoparticles. The Journal of the American Chemical Society, 2004, 126(18): 5664~5665
    [72] Xie H, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small, 2005, 1(5): 506~509
    [73] 查全性. 电极过程动力学导论. 第三版. 北京: 科学出版社, 2002
    [74] 周仲柏, 陈永言. 电极过程动力学基础教程. 第一版. 武汉: 武汉大学出版社, 1989
    [75] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. Second Edition. New York: John Wiley & Sons, Inc., 2001
    [76] Conklin M H, Hoffmann M R. Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. Environmental Science and Technology, 1988, 22(8): 899~907
    [77] Karraker D G. The Kinetics of the reaction between sulfurous acid and ferric ion. The Journal of Physical Chemistry, 1963, 67(4): 871~874
    [78] Kraft J, van Eldik R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 2. Decomposition of transient iron(III)-sulfur(IV) complexes. Inorganic Chemistry, 1989, 28(12): 2306~2312
    [79] Kraft J, van Eldik R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 1. Formation of transient iron(III)-sulfur(IV) complexes. Inorganic Chemistry, 1989, 28(12): 2297~2305
    [80] Danilczuk E, Swinarski A. The complex ion [FeIII(SO3)n]3-2n. Roczniki Chemii, 1961, 35: 1563~1572
    [81] Myers D. Surface, Interface, and Colloids: Principles and Applications. Second Edition. New York: John Wiley & Sons, Inc., 1999
    [82] 赵国玺, 朱步瑶. 表面活性剂作用原理. 第一版. 北京: 中国轻工业出版社, 2003
    [83] 江龙. 胶体化学概论. 第一版. 北京: 科学出版社, 2002
    [84] Klabunde K J. Nanoscale Materials in Chemistry. First Edition. New York: John Wiley & Sons, Inc., 2001
    [85] Cornel R M, Schwertmann U. The Iron Oxides-Structure: Properties, Reactions, Occurrences and Uses. Second Edition. Weinheim: WILEY-VCH Verlag Gmbh & Co. KGAa, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700