用户名: 密码: 验证码:
二维大地电磁正反演人机交互解释系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地电磁二维反演,虽然已经有了很多很成熟的算法,但是在反演精确度和可靠度方面各种方法的差异很大,如何寻找到一种更有效和更精确的反演方法,一直是广大地球物理工作者努力研究的方向。
     本文主要基于OCCAM反演方法,研究通过使用图像编辑技术设计二维地电模型,从而进行二维大地电磁有限元数值模拟及二维大地电磁反演,以提高解释速度。
     OCCAM反演方法无需人为分层,结果也和初始模型关系不大,且反演时收敛稳定,对反演人员的要求不高。且在适当的初始模型条件下,反演效果会更加理想。因此,本文采用VB编写图形编辑界面,构建正演模型和不同反演初始模型,以减少针对特定程序不断修改正、反演所需要的数据和数据类型的繁琐过程,提高模型构建速度;Fortran编写大地电磁测深有限元数值模拟以及反演的计算程序,由于计算程序中各种输入输出参数比较多,且VB和Fortran通用的数据类型较少,为了避免错误,采用文本传递方式解决参数传递问题。同时用两种方式实现对Fortran程序的调用,一种是应用动态链接库调用(DLL),另一种是直接调用Fortran生成的可执行程序。
     人机交互对模型的编辑更加直接,可以在想要深度的地层编辑任意形状的地质体,同时可以实时的显示对构造模型的响应,提高了解释速度。
For two-dimensional MT forward and inversion procedure not only cockamamie in the editing of geological model, such as manually edit the grid and give the resistivity of underground geological model and so on, but also is due to the model editing and the results of forward and inversion show in different systems, so we would be expend correspondingly longer cycle to get the results of forward and inversion, That would be serious impact the efficiency of the interpretation.
     In this paper, through research two-dimensional forward and inversion of MT and two-dimensional model of the image editing techniques ,to use the VB and Fortran mixed programming technique developed the two-dimensional MT interpretation system based on OCCAM inversion, provided the prior model parameters to reduce the multiple solutions of the inversion results. Speed up the efficiency of the interpretation.
     Two-dimensional MT forward imitated by using simplified Maxwell equations export two wave equations, that is, Helmholtz equation. Using Finite element method to solve this equation, First, differential equations and boundary conditions will be transformed into functional extremum problem, then gridded the solving regional and using the linear interpolation method to indicate the value in functional by node value, take a very small value on the nodes of the system of linear equations, solving the linear equations obtained the value of each node, and then calculate the value of auxiliary field, which has been lucania resistivity.
     In this paper, written in Fortran geoelectric model of the two-dimensional magnetotelluric forward OCCAM inversion process and procedures, and compile dynamic link library for use VB language to explain the design of interactive interaction system interface, by calling the dynamic link library to VB and Fortran language combination. In the dynamic library calls to use the disk version of transmission, a parameter to overcome the shortcomings of red tape, reducing the demand for memory, saving system resources. Fortran procedures for calculation of input and output all the way to adopt the text, graphical interface from VB to provide the input parameters, also stored in the text, read for the forward calculation, the end results of the calculation stored in the text, by VB read the results in the form of image rendering display.
     OCCAM principle method is to find structure in the sense of the minimum possible consistent with the data model, a model defines the roughness, in order to suppress data from non-model construction, model of the roughness must be minimized. Method is characterized by OCCAM at each iteration in the parameterλ, not only as a step size control parameter, but also as a smoothing parameter. At each iteration of the single variableλsearch to find the smallest difference data fitting the model, as the next iteration of the model, poor fitting until it reaches the level of expectations. OCCAM law for the use of finite element forward modeling, with an increase in the scale model, the matrix inversion will occupy most of the time, and increase the frequency of measurement than increasing the number of points on the inversion of time a greater impact, but to increase their forward little impact on computing time. OCCAM law and the use of Cholesky decomposition of positive definite symmetric matrix in the inversion, it is not the fastest speed, but very stable.
     Inversion method by comparing the RRI, OCCAM inversion approach requires that the input parameters small, high efficiency, high precision, stability and inversion algorithm staff do not ask for much and so on. From the calculation speed and convergence of circumstances, the appropriate limit of the model can achieve better results. OCCAM simulation in the pursuit of the original measurement data and fitting curve of the largest at the same time, the most requested model data or the most sleek smooth and stable convergence can be achieved. Results from the inversion, OCCAM inversion to better reflect the bodies of the underground geological features of electricity distribution, in order to explain the results to provide more reliable reference information, is a better tool to explain the inversion.
     In the Interactive Interaction system development processing, the solution including the dynamic library calls, coordinate transformation technology, mesh generation technology, the graphical model display and editing techniques, the results of the mapping curve, etc.. The realization of the model zoom, pan, a single unit and regional resistivity assignment functions. VB procedure of the functional definition of the subroutine, when necessary to call these routines to increase the utilization rate of the code at the same time enhancing the capacity of the secondary development of the system. Interactive interaction system is mainly explained by the menu bar, toolbar, model and curve areas, tab, select the color box with the resistivity value of these parts. The system functions mainly through the operation to achieve the mouse, the menu bar and toolbars to provide conversion between the various functions as well as the model to open and save. The system functions mainly through the mouse operation to achieve, to the various functions in mouse operation, determine the need to address the issue of function, various functions of the code used to that in operation when the mouse to determine the function of the need to implement the code, so to solve a variety of functions to achieve through the mouse problem.
     To use interpretation system editing the model is valid, simple and quick, solve the problem that manual input would be cumbersome and error-prone shortcomings, when the model was changed, the corresponding c calculated results will be displayed real-time, so the data processing cycle was shorten, improve the work efficiency. In the system different colors shows different resistivity , editing the model could choose the depth and horizontal position corresponds to a single unit, you can select multiple unit volume editor, intuitive to understand, and convenient. Model can pan and zoom, the overall resistivity of the model distribution and the local resistivity can edit the details, the scaling curve can make the overall curve shape and the local details can be a good show. Another advantage of this system is that the second development ability, are independent of each functional module, as long as other means to provide positive and added new inversion method to the system.
引文
[1]陈乐寿,刘任,王天生.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [2]周熙襄.电法勘探数值模拟技术[M].四川:科学技术出版社,1986.
    [3]徐世浙.有限元法及其在物探中的应用简介[J].物探化探计算技术,1982,4(2):86-103.
    [4]徐世浙,赵生凯.二维各向异性地电剖面的大地电磁场的有限单元解法[J].地震学报,1985,7(7):80-90.
    [5]徐世浙.电导率分层线性变化的水平层的点电源电场的数值解[J].地球物理学报,1986,29(1):84-90.
    [6]徐世浙.点源二维各向异性地电断面直流电场的有限元解法[J].中东海洋学院学报,1988,18(1):81-90.
    [7]徐世浙.点电源二维电场问题中傅氏变换的波数K的选择[J].物探化探计算技术,1988,10(3):235-239.
    [8]徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    [9]徐世浙,李予国,刘斌.大地电磁Hx型波二维地形改正的方法与效果[J].地球物理学报,1997,140(6):842-846.
    [10]罗延钟.关于用有限元法对二维构造作电阻率法模拟的几个问题[J].地球物理学报,1986,29(6):613-621.
    [11]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [12]罗延钟,姚建阳,何展翔,等.球形极化体上点源装置频谱激电异常的高级近似算法[J].物探化探计算技术,1987,9(2):113-122.
    [13]周熙襄,钟本善,严忠琼,等.电法勘探正演数值模拟的若干结果[J].地球物理学报,1983,26(5):479-491.
    [14]顾观文,武晔.电法软件设计中交互与可视化技术应用[J].地质与勘探,2004年增刊,243-246.
    [15]肖晓玲,卢正鼎.VC和Fortran混合编程及其在大地电磁测深中的应用[J].物探化探计算技术,2000,22(1):82-85.
    [16]张学胜.用VB和Fortran混合编程开发科学[J].计算软件计算机应用,2003,23(2):11-13.
    [17]朱从旭.混合编程与Fortran计算程序图形界面的实现[J].中南工业大学学报,2002,31(6):32-35.
    [18]关艺晓.二维地电模型大地电磁与直流电法人机交互解释系统的研究与实现[D].吉林:吉林大学地球探测科学与技术学院,2008.
    [19]朱伯芳.有限单元法原理与应用[M].北京:水利出版社,1979.
    [20]刘国栋,前辉.电磁方法研究与勘探[M].北京:地震出版社,1993.
    [21]欧阳联华,王家林,吴健生,等.大地电磁场正演计算中几个问题的探讨[J].同济大学学报(自然科学版),2003,31(7):828-833.
    [22]米萨克.纳比吉安著,赵经祥等译.电磁法(第一卷理论)[M].北京:地质出版社,1992.
    [23]陈小斌,张翔,胡文宝.有限元直接迭代算法在MT二维正演计算中的应用[J].石油地球物理勘探,2000,35(4):487-496.
    [24]徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1995.
    [25]陈小斌,赵国泽.基本结构有限元算法及大地电磁测深一维连续介质正演[J].地球物理学报,2004,47(3):535-541.
    [26]陈小斌.有限元直接迭代算法[J].物探与化探计算技术,1999,21(2):165-171.
    [27]马为.MT二维正演中辅助场计算新方法研究[D].北京:中国地震局地质研究所,2007.
    [28] Hohmann G W, Newman G A . Transient electromagnetic responses of surficial polarizable patches [J].Gephysics,1990,55(9):1098-1160.
    [29] Hohmann G W. Three dimensional induced polarization and elec- tromagnetic modeling [J].Geophysics, 1975,40(2):309-324.
    [30] Wannamaker P E. Two-dimensional topographic responses in maugn- etotellurics modeled using finite elements [J].Geophysics,1986, 51(1):21-31.
    [31] Rodi W L. A technique for improving the accuracy of finite elementsolutions for magnetotelluric data [J].Geophys J Roy Astr soc, 1976,44(3):483-506.
    [32]胡祖志,胡祥云.大地电磁二维反演方法对比研究[J].煤田地质与勘探,2005,33(1):64-68.
    [33]翁爱华,刘国兴.西方大地电磁测深理论发展现状[J].世界地质,1998,17(1):60-68.
    [34]王家映.地球物理反演理论[M].武汉:中国地质大学出版社,1998.
    [35] C deGroot-Hedlin and S Constable. Occam’s inversion to generate smooth, two–dimensional models from magnetotelluric data [J]. Geophysics,1990,55(12): 1613-1624.
    [36] Pelton W H, Rijo L, Swift, et al. Inversion of two-dimensional resistivity and induced -polarization data [J].Geophysics,1978, 43:788-803.
    [37] Wannamaker P E, Hohmann G. W, and Ward S H.Magnetotelluric responses of three- dimensional bodies in layered earths [J].Geophysics, 1982,49:1517-1533.
    [38] Sasaki Y. Two-dimensional joint inversion of magnetotelluric and dipole resistivity data [J].Geophysics.1989,54:254-262.
    [39] Wannamaker P E, Stodt J A, Rijo L. A stable finite-element solution for two-dimensional magnetotelluric modeling [J].Geophys. J.Roy. Astr. Sot,1987,88:277-296.
    [40] Constable S C,Robert L Parker, Catherine G Constable. Occam’s inversion:Apractical algorithm for generatlng smooth modles from electromagnetic sounding data [J].Geophysics,1987,52(3):289-300.
    [41] Hohmann G W, Kintzinger P R. Evaluation of the measurement of induced electrical polarization with an inductive system [J].Geophysics, 1970,35:901-915.
    [42]沃德S H.地球物理用电磁场论[M].新疆工学院电磁法科研组译.北京:地质出版社,1978.
    [43]王若,王妙月.可控源音频大地电磁数据的反演方法[J].地球物理学进展,2003,18(2):197-202.
    [44] Smith J T,Booker J R. The rapid relaxation inverse for two-and three-dimensional magnetotelluric data [J].Geophysics,1990,53:1565 -1576.
    [45] Wannamaker P E. Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity [J].Geophys.J.Int, 1996,127:806-810.
    [46]马占良,戴升,白彦芳.VB与FORTRAN混合编程的实现[J].青海气象,2007,4:66-67.
    [47]徐林春,赵明登,童汉毅.Fortran与VB混合编程及其在流动数值模拟可视化技术中的应用[J].武汉大学学报(工学版),2004,37(2):21-24.
    [48]卢毅.Visual Basic实例教程[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700