用户名: 密码: 验证码:
位错模型模拟昆仑山断层不均匀错动引起的地面变形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断层活动诱发了地震,地震是断层活动的一种表现。一次次地震的发生促成了断层的生长与发展,造成了地面破裂、变形和多种严重的灾害。地面大幅度隆起、陷落、山体滑坍移位,田园、道路被切错,建筑物倒塌破裂,令人触目惊心;凡断层经过的地段地震灾害明显加重,给人类带来极其严重的灾难。断裂带的活动是引发地震的“元凶”,地震产生的地表破裂是造成建筑物的破坏以及人类生命财产损失的重要原因。因此,断层错动的研究有助于了解和认识地球内部的动力学过程,探索地震孕育、发生过程,预测地震危险性,最大限度的减轻地震灾害。
     本文以东昆仑断裂带为背景,详细分析了东昆仑断裂带的地质构造背景;介绍了位错理论的发展和Okada位错理论模型的基本理论和应用原理;并综合东昆仑断裂带的地质地理环境,应用位错理论对均匀滑动模型和不均匀滑动模型在地面引起的形变场进行计算,分析研究;运用C语言进行程序设计,结合GMT(generic mapping tools )中断层的有关参数及该区域地质、地球物理资料,对东昆仑断裂带进行正演解算和模拟,将计算结果运用GMT软件处理,得到了该区域的均匀位错和不均匀位错水平形变和垂直形变模拟场,取得了较好的结果。综合地质,地球物理结果分析断层活动与地面形变的关系,得到的主要结论为:
     1.东昆仑活动断裂带具有明显的破裂分段特征,不同段落的活动水平存在一定差异,断裂垂直位移分量小,整条断裂以左旋走滑为主。
     2.断裂带普遍具有羽列组合和局部走向突变等结构特征,沿断裂带走向出现了几个位移峰值,断层错动的不均匀性在位错阶区产生垂直形变隆起区或下沉区。
     3.通过均匀分布与不均匀分布模型计算可知,断层面上的地面位移场在走滑方向的近场变形差异最大,在垂直于断层走向的变形差异次之,在垂直于地面方向的变形差异最小。
     上述观点与现实的特征情况表现出较好的一致性,取得了较好的成果,证明了位错理论模型在断层错动与地面形变关系研究应用中的可行性。
Fault activity induces the earthquake and the earthquake is a kind of a performance of fault activity. Time and time again,the earthquake contributs to the growth and development of fault,causes the ground rupture,deformation and many kinds of serious disasters.Ground elevates and collapses dramatically,it also causes landslide and shift,pastoral and roads were offset,the buildings collapsed,it is a ghastly sight.The earthquake disaster is intensified significantly in the case of having faults,it brings mankind much more serious disaster. The activity of the fault zone is "culprits" which triggers earthquake,the ground rupture generated by the earthquake is the key reason that result in heavy damage to buildings and losses of life and property of humanity.Therefore,the study of faulting will help to understand the internal dynamics of the Earth,explore the earthquake preparation process, predict earthquakes risk, and maximize the of earthquake disaster reduction.
     In this paper,based on the east Kunlun fault zone, we analyze its’geological structure background in detail; introduce dislocation theory including its development, and Okada elastic half-space theory model;calculate and study ground deformation caused by symmetric slip model and asymmetric slip model,combining with the geographical conditions and geological structure of the east Kunlun fault zone by using dislocation model;through program design with C language,the relevant parameters of the fault in GMT and geological and geophysical data of the area,carry on the forward solution and simulation of the east Kunlun fault zone.Handling the computational results with GMT software, we get the horizontal and vertical deformation of even dislocation and uneven dislocation of the area, which is a good result; analyzing the relationship between faulting and ground deformation by combining with geological and geophysical data;get some effective outcomes:
     1.The east Kunlun active fault zone has obvious rupture segmentation characteristics, there are differences in activity level of different sections. The vertical displacement components of the fault is smaller,and the whole fault zone is mainly left-lateral strike-slip fault.
     2.The fault zone has general structure feature that it is consisted like feather and the abrupt change of local strike.There are a few peak displacement along the fault zone trending. The asymmetric faulting brings about vertical deformation uplift or subsidence area in the steps of the dislocation.
     3.By computing the ground displacement on the fault planes with symmetric distribution model and asymmetric distribution model,we obtain that the differences of near-field deformation are largest in fault strike slip direction, smaller in direction normal to fault, and smallest in vertical direction.
     Viewpoints mentioned above is consistence with practical character. It is proved that dislocation theory model is feasible in study on relation between faulting and ground deformation.
引文
[1]施养杭,罗刚.引入结构功能概念的抗震设计方法[J].福建建筑, 2002, 76(1): 30-31
    [2]王栋.断层倾角对近断层地震动特征的影响[D].哈尔滨:中国地震局工程力学研究所, 2006
    [3]戴华光,贾云鸿,刘洪春,等.青藏高原东北缘地震断层的研究[J].地质力学学报,1995,1(1): 39-43
    [4]卢海峰.浅谈活断层及其研究方法[J].江苏地质,2006,30(2):89-93
    [5]丁国瑜,田勤俭,孔凡臣,等.活断层分段原则、方法与应用[M].北京:地质出版社,1993
    [6]李树德.活动断层研究[J].水文地质工程地质,1996,23(5):33-35
    [7]C H Scholz著.马胜利译.地震与断裂力学[M].北京:地震出版社,1996
    [8]丁国瑜.断裂分段理论与应用[M].北京:地震出版社,1994:1-63
    [9]闻学泽.活动断裂地震潜势的定量评价[M].北京:地震出版社,1995:1-146
    [10]张之立等.断裂构造体系的形成和扩展过程的力学分析和应用[J].中国科学,1987, 11:1214~1224
    [11]Harris A R,Simpson R W,Reasenberg P A.Influence of static stress changes on earth- quake locations in Southern Califomia[J].Nature,1995,375:221-224
    [12]Hashimoto M.Correlation to static stress changes associated with the Kobe earthq- uake:calculation of changes in Coulomb failure function and comparison with seismi- city change[J].J.Seismo1.Soc.Japan ,1997,50:21—27
    [13]Hodgkinson K M,Stem R S,King G C P.The 1954 Rain-bow Mountain—Fairview Peak-Dixie Valley earthquake:A triggered normal faulting sequence[J].J.Geophys.Res, 1996,101:25459-25471
    [14]Stein R S,King G C P,Lin J.Changes in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude=7.4 Landers earthquake[J].Science,1992, 258:1328~1332
    [15]Reasenbeg P A,Simpson R W.Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake[J].Science,1992,255:1687~1690
    [16]Cornell C A.Seismic hazard induced by mechanically interactive fault segments[J].Bull Seism Soc Amer,1993,83:436~449
    [17]Stein R S,Barka A A,Dieterich J H.Progressive failure on the North Anatolian fault since 1939 by earthquake stres triggering[J].Geophys.J.Int,1997,128:594—604.
    [18]Toda S,Stein R S,Reasenberg P A,et a1.Stress transferred by the 1995 Mw=6.9 Koba, Japan,shock:efect on aftershock and future earthquake probability[J].J.Geophys. Res,1998, 103,B10:24543—24565
    [19]张国民,李丽.强震成组孕育和发生过程中相互间影响的研究[J].地震,1997,17(7): 221-231
    [20]刘桂萍,傅征样.1976年7月28日唐山7.8级地震触发的区域地震活动和静应力场变化[J].地震学报,2000,22(1):17-26
    [21]张秋文,张培震,汪一鹏,等.断裂间相互作用及其对活动断裂地震潜势的影响初步研究·活动断裂研究[M].北京:地震出版社,2001:41-49
    [22]傅征祥,刘桂萍.青藏高原北缘海原、古浪、冒马大地震问相互作用的动力学分析[J].地震地质,2001,23(1):35-42
    [23]马谨,马胜利,刘力强,等.断层相互作用型式的实验研究[J].自然科学进展,2002, 12(5):503-508
    [24]张秋文,张培震,王乘,等.断层间相互作用的触震与缓震效应定量评价[J].地球学报,2004,25(4):483-488
    [25]张秋文,王乘,张培震,等.断层之间的相互作用及其地震地质意义[J].地质通报,2006,25(11):1338-1341
    [26]Steketee J A. On Volterra’s dislocation in a semi-infinite elastic medium[J].Can.J.Phys,1958,36:192-205.
    [27]Steketee, J. A.Some geophysical applications of the elasticity theory of dislocations[J]. Can.J.Phys.1958, 36: 1168-119
    [28]Savage, J.C.and Hasti,L.M.Suyface deformation associated with dip-slip faulting[J].J. Geophys.Res,1966,71:4897-4904
    [29]Manshinha L and Smylie D.E.The displacement fields of inclined faults[J].Bull. Semim. Soc.Am.1971,61:1433-1440
    [30]Sato R. Crustal deformation due to dislocation in a multlayered medium [J].J.Phys. Earth, 1971,19:31-46
    [31]Iwasaki T and Sato R. Strain field in a semi-infinite medium due to an inclined rectangular fault [J].J.Phys. Earth, 1979, 27:285-314
    [32]Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bull. Seismol.Soc.Am.,1985,82:1018-1040.
    [33]Okada Y. Internal deformation due to shear and tensil faults in a half-space[J]. Bull. Seismol.Soc.Am.,1992,82:1018-1040.
    [34]Massonnet D;Rossi M.;Carmona C.Displacement field of the Landers earthquake mapped by radar interferometry.[J].Nature,1993,364(6433):138
    [35]Massonnet, Didier; Feigl, Kurt L.; Vadon, Helene; Coseismic deformation field of the M = 6.7 Northridge, California earthquake of January 17, 1994 recorded by two radar satellites using interferometry[J].Geophys Res Lett,1996,23(9):969-972
    [36]Patzig R, Shapiro S, Asch G,etal.Seismogenic plane of the northern Andean Subduction Zone from aftershocks of the Antofagasta (Chile) 1995 earthquake[J].Geophys. Res. Lett.2002, 29(8): 105-1-105-4
    [37]Allison J; David S; Yuri F; The 1999 (Mw 7.1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry[J].Bull. Seismol. Soc. Am.2002, 92(4):1433-1442
    [38]Chen, Chia-Tang, Chen, K.S.,Wang, C.T.,etal. Applications of AIRSAR data acquired during PACRIM-II in Taiwan[J].Dig Int Geosci Remote Sens Symp,2001,6:2610-2612
    [39]Papadopoulos G..A.; Ganas.A.; Plessa A. The skyros earthquake (Mw 6.5) of 26 July 2001 and precursory seismicity patterns in the North Aegean Sea[J].Bull. Seismol. Soc. Am, 2002, 92(3):1141-1145
    [40]Ziyadin C, Chabalier D,Jean-Bernard, etal.Atmospheric effects in SAR interferometry, implications on interpretation and modeling surface deformation: A case study of the 1999 (MW=7.4) Izmit earthquake, Turkey[J].Eur Space Agency Spec Publ ESA SP,2004,(550):1-6
    [41]Bos. A.G.,Spakman W. The resolving power of coseismic surface displacement data for fault slip distribution at depth[J].Geophys. Res. Lett.2003, 30(21):SDE 9-1 - SDE 9-4
    [42]Talebian M; Fielding E J.; Funning G J. The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault[J].Geophysical Research Letters,2004,31(11): L11611 1-4
    [43]赵少荣,於宗俦.动态大地测量反演理论及其若干应用[J].测绘学报,1993,22(4): 241-248
    [44]赵少荣.利用大地测量资料反演的1976年唐山地震双断层位错模式[J].测绘学报,1995,24(4):250-258
    [45]Guangyu Fu and Wenke Sun. Effects of spatial distribution of fault slip on calculating co-seismic displacement, GRL, 2004, 31,L21601
    [46]陈运泰,林邦慧,黄立人等.用大地测量资料反演1976年唐山地震的位错模式[J].地球物理学报,1979,22(3):201-217
    [47]万永革,吴忠良,周公威等.几次复杂地震中不同破裂事件之间的“应力触发”问题[J].地震学报.2000,22 (6):568-576
    [48]申重阳,李辉.丽江7.0级地震重力前兆模式研究[J]地震学报, 2003,23(2):201-207
    [49]燕乃玲,李辉.丽江地震前后重力场变化的有限矩形位错模型分析[J].地震学报,2003,25(2):172-181
    [50]张红,王超,单新建等.基于SAR差分干涉测量的张北~尚义地震震源参数反演[J].科学通报2001.46(21):1837-1841
    [51]单新建,马瑾,王长林等,利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学,2002, 32(10):838-844
    [52]郝平,田勤俭.2000年1月15日姚安6.5级地震较强余震的应力触发[J].地震研究,2004,27(2):223-231
    [53]沈正康,万永革,甘卫军等.东昆仑活动断裂带大地震之间的粘弹性应力触发研究[J].地球物理学报.2003,46(6) :786-795
    [54]田韬,卢永.昆仑山口西Ms8.1地震前远场应变异常研究[J].内陆地震,2004, 17(4):321-330
    [55]朱航.2001年昆仑山口西8.1级地震与1927年古浪8.0级地震的相似性[J].四川地震. 2004,21(4): 114-121
    [56]谭凯,王琪,申重阳.用大地测量数据反演2001年昆仑山地震[J].大地测量与地球动力学,2004, 24(3):47-50
    [57]万永革,王敏,沈正康等.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J].地震地质. 2004,26(3): 393-404
    [58]乔学军,王琪,杜瑞林等.昆仑山口西Ms8.1级地震的地壳变形特征[J].大地测量与地球动力学,2002,22(4):6-11
    [59]王庆良,王建华,朱桂芝等.东昆仑断裂带及昆仑山口西8.1级地震垂直形变研究[J].地震地质, 2004,26(2):273-280
    [60]Okubo S. Potential and gravity changes due to shear and tensile faults in a half-space[J]. Geophys J Res, 1984,97 (B5) : 7137-7144
    [61]Okubo S.Potential and gravity changes raised by point dislocations[J].Geophys J Int, 1999, 105: 573-586
    [62]黄建梁,李辉,李瑞浩.点源位错引起的重力、位势及其梯度变化[J].地震学报,1995, 17(1):72-80
    [63]刘崇兵,宁津生,张禹慎.利用地震面波和重力资料联合反演地壳—上地慢三维密度结构的方法探讨[J].测绘学报,1999,28(2)
    [64]Chinner.M A.The deformation of the ground surface faults[J].Bull Seism Soc Amer,1961,51:355-372
    [65]Press F. Displacements, strains and tilts at tele-seismic distances[J].L.Geophys.Res. 1965,70, 2395-2412
    [66]刘光勋.东昆仑活动断裂带及其强震活动[J].中国地震,1996,12(2):119-126
    [67]青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带[M].北京:地震出版社,1999,1-186
    [68]任金卫,汪一鹏,吴章明等.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率活动断裂研究[M].北京:地震出版社,1999,147-163
    [69]马超.基于星载D-InSAR技术的地表形变及震源特征参数数值模拟研究—以青藏高原昆仑山西Ms8.1地震为例[D].北京,中国地震局地质研究所,2005
    [70]江娃利,谢新生.东昆仑活动断裂带强震地表破裂分段特征[J].地质力学学报,2006,12 (2):132-139
    [71]Velaeco A.A.Rroadband source modeling of the November 8,1997, Tibet (Mw=7.5) earthquake and its tectonic implications[J].Journal of Geophysical Research,2000,105(B12): 28065-28080
    [72]徐锡伟,陈文彬,于贵华等.昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征[J].地震地质,2002,24(1):1-13
    [73]Peltzer G, Crampe F, King G.. Evidence of nonlinear elasticity of the crust from the Mw 7.6 Mani (Tibet) earthquake[J].Science, 1999,286:272-276
    [74]单新建,柳稼航,马超. 2001年昆仑山口西8.1级地震同震形变场特征的初步分析[J].地震学报,2004,26(5): 474-480
    [75]陈杰,陈宇坤,丁国瑜等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究,2003.23(6):629-639
    [76]党光明,王赞军.青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害[J].地质通报,2002,21(2):105-120
    [77]王赞军,党光明,张瑞斌等.昆仑山口西8.1级地震地表破裂的类型与性质[J].高原地震,2002,14(1):17-25
    [78]张永志,王卫东.青藏高原东北缘断层活动变形的模拟研究[J].大地测量与地球动力学,2004,24(1):63-67
    [79]马超,单新建.星载合成孔径雷达差分干涉测量(D-InSAR)技术在形变监测中的应用概述[J].中国地震,2004.20(4):410-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700