用户名: 密码: 验证码:
半导体激光器非线性动态行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信的发展,半导体激光器已经成为远程通信和光纤数据传输不可缺少的器件。但由于半导体材料的一些固有特性,使以半导体材料为工作物质的半导体激光器产生自相位调制和驰豫振荡。这使得半导体激光器对外部的微扰十分敏感,易产生非线性动力学动态输出。近年来,半导体激光器的非线性输出特性的实用性引起人们的关注,并在一系列的应用领域得到广泛的研究。另外,半导体激光器作为研究激光器的一些基本特性的非线性动力学系统也逐渐引起了人们的重视。
     理论和实验都已经证明,各种各样的外部微扰都可以导致半导体激光器输出不稳定,产生振荡以及混沌等非线性动力学动态输出。而外部光注入相对光反馈和电流调制以及光电反馈来说,是用一个独立的光源作为微扰,可以直接通过微扰机制最大程度的导致激光器输出不稳定,且微扰量易于控制。因此,外部光注入作为研究半导体激光器非线性特性的有效方法已成为近年来的一个研究热点。本文对外部光注入半导体激光器的非线性动力学行为进行了理论和实验研究。
     实验研究了外部光注入DFB激光器非线性动力学行为特性。系统观察了在外部光注入情况下,DFB激光器产生的注入锁定、倍周期振荡、多周期振荡、混沌和四波混频等复杂的非线性动力学现象,并绘制出了其输出特性随注入光强度和频率失谐量变化的动力学特征图。研究表明,复杂的动力学行为总是与倍周期以及多周期行为相关,当激光器处于复杂动力学态时,其输出的功率谱为连续谱。通过改变外部注入光参数,可以得到各种复杂的非线性动力学输出,这对半导体激光器非线性动力学特性的研究和应用有很大的价值。
     理论研究了外部光注入垂直腔面发射激光器(VCSELs)的非线性动态行为特性。对两种情况下,即外部注入光的偏振方向平行或垂直于裸激光器输出的光的偏振方向,垂直腔面发射激光器的输出动态特性进行了数值仿真。研究表明,在外部光注入下,VCSELs呈现出注入锁定、倍周期以及混沌等非线性动态行为。不同偏振方向注入下,相同的外部注入参数对VCSELs输出的作用效果不同。合理的调节外部注入光的强度和频率失谐量,可以有效地控制垂直腔面发射激光器的偏振态,并能使激光器的输出处于确定的状态。
With the development of optical communication, semiconductor lasers become indispensable in long distance communication and information processing. However, due to a combination of intrinsic material related properties leading to relaxation oscillation and self-phase modulation, these lasers are very sensitive to external perturbations, and easily yield nonlinear dynamic output. It has been attended that the nonlinear dynamical characteristics of semiconductor lasers may be used in many applied fields, and have caused extensive studies. Additionally, semiconductor lasers used as a nonlinear dynamic system to investigate some inherent characteristics of lasers have gradually received considerable attention.
     It has been proved experimentally and theoretically that external perturbations such as external optical injection, optical feedback, current modulation and electro-optical feedback, can result in the output of semiconductor lasers to become unstable and yield oscillation or chaotic output. Prior to other methods, the external optical injection allows one to perturb the laser with an independent optical field so that the quantity of perturbation is easy to control. As an effective method to investigate the nonlinear dynamics of semiconductor lasers, external optical injection has attracted considerable attention in recent years.
     In this paper, the nonlinear dynamic characteristics of the distributed feedback semiconductor lasers (DFB-SL) under external optical injection have been investigated experimentally. Various nonlinear dynamic phenomena, such as stable injection locking, periodic oscillations, deterministic chaos, four-wave mixing and many other complex instabilities, are systemically observed by changing the injection optical field, and the nonlinear dynamics characteristics are mapped as a function of the power of the optical injection and the detuning frequency between the injection frequency and free-running frequency of the unperturbed DFB-SL. Experimental results show DFB-SL under external optical injection is very sensitive to external perturbation and can exhibit various nonlinear dynamical characteristics. The complex dynamics is always related to the multi-periodic dynamics. When the laser operates in the complex dynamic state, its power spectrum is continuous spectrum. By varying the parameters of injection light, it is possible to obtain various nonlinear dynamic outputs, and this is greatly valuable in investigation and application of the nonlinear dynamics of semiconductor lasers.
     The nonlinear dynamics of a vertical-cavity surface-emitting laser(VCSEL) with external optical injection are also studied numerically in this paper. Two situations that the polarization of the injection light is parallel or orthogonal with the solitary VCSEL output light are considered. The simulation results show the VCSEL exhibits periodic oscillations, deterministic chaos and many other complex instabilities under optical injection. However, the same injection parameters have different effects on the output of the VCSEL under parallel or orthogonal optical injection. By adjusting the injection strength or frequency detuning properly, the laser can be controlled to work at a given state, and the polarization of the VCSEL output light also can be controlled.
引文
[1] 江剑平,《半导体激光器》,电子工业出版社。2000
    [2] M. G. A. Bernard, G. Duraffourg. Laser conditions in semiconductors. Phys. Status Solidi., vol. 1, pp:699, 1961
    [3] M. I. Nathan, W. P. Dumke, G. Bums, et al., Stimulated emission of radiation from GaAs pn-junctions. Appl. Phys. Lett., vol. 1, pp:62, 1962
    [4] T. M. Quist, R. H. Rediker, R. J. Keyes, et al., Semiconductor master of GaAs. Appl. Phys. Lett.,vol.1, pp:91, 1962.
    [5] R. N. Hall,G. E. Fenner, J. D. kingsley, et al., Coherent Light Emission From GaAs Junctions.Phys. Rev. Lett., vol.9, pp:366, 1962.
    [6] H. Kroemer. A Proposed Class of Heterojunction Lasers. IEEE Proc., vol. 51, pp: 1782, 1963.
    [7] J. M. Woodall. Solid State Device Conference. California USA., vol. 6: 19, 1967
    [8] M. B. Panishi, I. Hayashi and S. Sumski, 1EEE J. Quantum Electron., vol. 5, pp:210, 1969.
    [9] Z. I. Alferov, V. M. Andreev, E. L. Portnoy, et al., Injection lasers based on heterojunctions in the A1As-GaAs system with low threshold at room temperature. Sov. Phys. Semiconductor., vol. 3, pp:1107, 1970.
    [10] M. B. Panish, I. Hayashi and S. Sumski, Doubled-heterostructure injection lasers withroom-temperature thresholds as low as 2300A/cm~2. Appl. Phys. Lett., vol. 16, pp:326, 1970.
    [11] 范希武,于广友。“97年度信息光电子前沿发展与生产开发对策研讨会”论文集,集成光电子学国家重点联合实验室,福建泉州,1997年11月
    [12] 王路威.“半导体激光器的发展以及应用”,成都大学学报,vol.22,pp:34,2003.
    [13] 王德,李学千.“半导体激光器的最近进展及其应用现状”,光学精密工程,vol.9,pp:281,2001.
    [14] 耿素杰,王琳.“半导体激光器及其在军事领域的应用”,激光与红外,vol.33,pp:311,2003.
    [15] H. Haken, H. Sauermann. Frequency shifts of laser modes in solid state and gaseous systems. Z. Phys., vol. 176, pp:47, 1963
    [16] A. Argyris, D. Syvridis. Performance of open-loop all-optical chaotic communication systems under strong injection condition. 1EEE/OSA J. Lightwave Technol., vol. 22, pp:1272, 2004.
    [17] Y. Liu, P. Davis, Y. Takiguchi et al.. Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers. IEEE,J. Quantum Electron., vol. 39, pp:269, 2003.
    [18] S. Tang, J. M. Liu. Effects of message encoding and decoding on synchronized chaotic optical communications. IEEE,J. Quantum Electron., vol. pp: 1468, 2003.
    [19] T. Heil, J. Mulet, I. Fischer et al.. ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron., vol. 38,pp: 1162, 2002.
    [20] H. Leung, T. Lo. Chaotic radar signal processing over the sea. IEEE J. Ocean. Eng., vol. 18, 1993.
    [21] F. Y. Lin, J. M. Liu. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron.,vol. 40, pp:815, 2004.
    [1] H. Haken, H. Sauermann. Frequency shifts of laser modes in solid state and gaseous systems. Z. Phys., vol. 176, pp:47, 1963.
    [2] 钱梅珍,崔一平,杨正名.激光物理.北京:电子工业出版社。2001.
    [3] 张洪钧,《光学混沌》,上海科技教育出版社,上海,1995.
    [4] H. Haken, Light and Materic 11 Chap. 6. 2.
    [5] R.Lang and K. Kobayashi, External optical feedback effect on semiconductor laser laserproperties, IEEE J. Quan. Electron., vol.QE-16, pp:347, 1980.
    [6] V A Lodi, S Donati, M Manna, Chaos and locking in a semiconductor laser due to external injection, IEEE J. Quantum Electron., vol. 30, pp: 1537, 1994.
    [7] R.Lang and K. Kobayashi, External optical feedback effect on semiconductor laser laser properties, IEEE J. Quan. Electron., vol.QE-16, pp:347, 1980.
    [8] V. Ahlers, U. Parlitz and W. Lauterbom, Hyperchaotic dynamics and synchrorfization of external-cavity semiconductor lasers, Phy. Rev. E, vol.58, pp:7208, 1998.
    [9] E. A. Viktorov and P. Mandel. Synchronization of two unidirectionally coupled multimode semiconductor lasers, Phy. Rev. A, vol.65, pp:1, 2001.
    [10] J. Ohtsubo. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback, IEEE J Quantum Electronics, vol. 38, pp: 1141, 2002.
    [11] Y. Liu, Y. Takiguchi, T. Aida et al. Injection Locking and synchronization of periodic and chaotic signals in semiconductor lasers.IEEE J. Quantum Electronics, vol.39, pp:269, 2003
    [12] F. Rogister, D. Peroux, M. Sciamanna et al. Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Opt. Comm.,vol .27,pp:295, 2002.
    [13] F. Rogister and A.Locquet et al, Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection, Opt. Ltt., vol.26, pp:1486,2001.
    [14] A. E A. Fischer O. K et al, Experimental and theoretical study of filtered optical feedback in a semiconductor laser, IEEE J. Quantum Electronics, vol.36, pp:375, 2000.
    [15] G. P. Agrawal and N. K. Dutta, 《Semiconductor Lasers》 (Second Edition) (New York: Van Nostrand Reinhold) 1993.
    [16] J. Ohtsubo. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback, IEEE J Quantum Electronics, vol. 38, pp: 1141, 2002.
    [17] S.Tang and J. M. Liu. Chaos synchronization in semiconductor lasers with Optoelectronic feedback, IEEE J. Quantum Electronics, vol.39, pp:708, 2003.
    [18] F.Y. Lin, and J. M. Liu. Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback, IEEE J. Quantum Electronics, vol.39, pp:562, 2003.
    [19] J. M. Buldú, J. G. Ojalvo and M. C. Torrent, Multimode synchronization and communication using unidirectionally coupled semiconductor lasers., IEEE J. Quantum., vol. 40, pp: 640, 2004.
    [20] T B Simpson, Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to extemal optical injection, Opt Commun., vol. 215, pp:135, 2003.
    [21] V. Annovazzi-Lodi, S. Donati, M. Manna. Chaos and locking in a semiconductor laser due to external injection. IEEE J. Quantum Electron., vol. 30, pp:1537, 1994.
    [22] T. B. Simpson, J. M. Liu, K. F. Huang et al.. Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quantum Semiclass Opt., vol. 9, pp:765, 1997.
    [23] A. Murakami. Phase locking and chaos synchronization in injection-locked semiconductor lasers. IEEE J. Quantum Electron., vol. 39, pp:438, 2003.
    [1] S. K. Hwang, J. M. Liu. Dynamiical characteristics of an optically injected semiconductor laser. Opt Commun., vol. 183, pp:195, 2000.
    [2] S. Wieczorek, B. Krauskopf, D. Lenstra. Sudden chaotic transitions in an optically injected semiconductor laser. Opt Lett. vol. 26, pp:816, 2001.
    [3] S. Eriksson, Asa Marie Lindberg, Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection. Opt Lett. vol. 26, pp: 142, 2001.
    [4] S. Wieczorek, T. B. Simpson, B. Krauskopf et al.. Bifurcation transitions in an optically injected diode laser: theory ane experiment. Opt Commun., vol.215, pp: 125, 2003.
    [5] S. K. Hwang, J. M. Liu, J. K. White. 35-GHz intrinsic bandwidth for direct modulation in1.3-μm semiconductor Lasers subject to strong injection locking. IEEE Photon. Technol. Lett., vol.16, pp:972, 2004.
    [6] F. Mogensen, H. Olesen, G. Jacobsen. Locking condition and stability of properties for a semiconductor laser with external light injection. IEEE J. Quantum Electron., vol. QE-21, pp:784,1985.
    [7] C. H. Henry, N. A. Olsson, N. K. Durra. Locking range and stability of injection locked 1.54μm InGaAsP semiconductor laser. IEEE J. Quantum Electron., vol. QE-21, pp: 1152, 1985.
    [8] I. Petitbon, P. Gallion, G. Debarge et al.. Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser. IEEE J. Quantum Electron., vol. 24, pp: 148, 1988.
    [9] L. Goldberg, M. K. Chun. Injection locking characteristics of a 1 W broad stripe laser diode. Appl. Phys. Lett., vol. 53, pp:53, 1988.
    [10] S. C. Chan, J. M. Liu. Microwave frequency division and multiplication using an optically injected semiconductor laser. IEEE J. Quantum Electron., vol. 41, pp:1142, 2005.
    [11] G Yabre, H. Waardt, H. P. A. Boom et al.. Noise characteristics of single-mode semiconductor lasers under extemal light injection. IEEE J.Quantum Electron., vol. 36, pp:385, 2000.
    [12] T. B. Simpson, J. M. Liu, A. Gavrielides. Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers. IEEE Photon. Technol. Lett., vol.7, pp:709,1995.
    [13] J. M. Liu, H. F. Chen, X. J.. Meng et al.. Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking. IEEE Photon. Technol. Lett., vol.9, pp: 1325,1997.
    [14] T. Chattopadhyay, M. Bhattacharya. Submillimeter wave generation through optical four-wave mixing using injection-locked semiconductor lasers. IEEE/OSA J. Lightwave Technol., vol.20,pp:502, 2002.
    [15] J. Minch, S. L. Chuang, C. S. Chang et al.. Theory and experiment on the amplified spontaneous emission from distributed-feedback lasers[J]. IEEE J. Quantum Electron., vol.33,pp:815, 1997.
    [1] TaKaoka K, Ishikawa M, Hatakoshi G. Low-threshold and high-temperature operation of InGaAlP-based proton-implanted red VCSELs. IEEE J Sel Top Quantum Electron., vol.7, pp:381,2001.
    [2] Chang-Hasnain CJ, Harbison JP, Hasnam G, Von Lehmen AC, Florez LT, Sto.el NG. Dynamic, polarization and transverse mode characteristics of VCSELs. IEEE J Quantum Electron., vol. 27,pp:1402, 1991.
    [3] Chang-Hasnain CJ. Progress and prospects of long-wavelength VCSELs. IEEE Commun Mag., vol. 41, pp:530, 2003.
    [4] Li XF, Pan W, Luo B, Ma D, Deng G. Theoretical analysis of multi-transverse-mode characteristics of vertical-cavity surfaceemitting lasers. Semicond Sci Technol vol. 20, pp:505, 2005.
    [5] Li XF, Pan W, Luo B, Ma D, Li NH. Suppressing nonlinear dynamics induced by extemal optical feedback in vertical-cavity surface-emitting lasers. Opt Laser Technol., vol.37, pp:438, 2005.
    [6] A. K. Jansen van Doom, M. P. van. Exter et al.. Electroptic anisotropy and polarization of VCSELs. Appl. Phys. Lett., vol.69, pp:1041, 1996.
    [7] M. San Miguel, Q. Feng, J. V. Moloney. Light polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A., vol.52, pp:1728, 1995.
    [8] J. Martin-Regalado, F. Pmti, M. San Miguel et al.. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., vol.33, pp:765, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700