用户名: 密码: 验证码:
武汉天兴洲公铁两用长江大桥空间几何非线性有限元仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武汉天兴洲公铁两用长江大桥主桥设计为98+196+504+196+98m双塔三索面三主桁斜拉桥,上下分两层,上层为6车道公路,下层为4线铁路,两线客运专线,两线Ⅰ级铁路干线。铁路桥面采用纵横梁体系,有碴桥面。每两个节间设置一道伸缩纵梁,每道伸缩纵梁上方混凝土板开一条缝。该桥是我国第一座下承式钢—混凝土结合有碴铁路桥面斜拉桥,也是我国武广客运专线上的关键工程。本文对武汉天兴洲公铁两用长江大桥的有限元计算方法和受力特性作了系统的研究,主要完成了以下工作:
     1.分析了大跨度斜拉桥几何非线性的主要影响因素,包括斜拉索的垂度效应、梁—柱效应和大位移效应,并提出有限元分析中相应的处理方法。
     2.建立了天兴洲公铁两用长江大桥的空间几何非线性有限元分析模型,并研究了其恒载和活载作用下的挠度和各构件的应力。结果表明:该桥刚度和强度满足要求,受力合理。设计荷载下不考虑几何非线性计算所得的各种响应都偏小,偏于不安全,但最大误差不超过8%。
     3.研究了季节温差和日照温差对天兴洲桥受力状态的影响。结果表明:在整体升温和整体降温作用下,虽然在靠近主跨跨中的横梁结点处产生较大的应力,但与一期恒载、二期恒载和活载组合后总应力都不超过200MPa。
     4.对钢—混凝土组合铁路桥面系混凝土发生徐变后,混凝土板及纵、横梁之间的应力重分布进行了研究。结果表明:混凝土徐变后混凝土桥面板的应力变小,其中上板面应力变化比较明显,下板面应力变化较小;钢纵、横梁下翼缘的应力增大,但幅度较小,应力重分布后混凝土板及钢纵、横梁上的应力仍小于规范规定值。
     本文的研究成果不仅为武汉天兴洲公铁两用长江大桥的设计提供了依据,其基本思想和方法也可应用于其他大型复杂钢—混凝土组合结构斜拉桥的受力状态分析。
The main bridge of Wuhan TianXing-zhou highway/railway Yangtze River bridge is a double-tower, three cable planes, three main trusses cable-stayed bridge with span arrangement (98+196+504+196+98) m.The expansion longitudinal beams are designed in every two panels and slots are designed in the concrete deck over the expansion longitudinal beams.The bridge is the first steel-concrete composite cable-stayed through bridge with ballasted deck and is the key project of Wuhan-Guangzhou Passenger Transport Railway.The finite element computing method and the mechanical behavior of Wuhan Tian Xing-zhou highway/railway Yangtze River bridge were studied systemically. Main work of this paper is as follows:
     1. The main influence factors of geometric nonlinearity of long-span cable-stayed bridge were analyzed, including cable stay sag effect, beam-column effect and big displacement effect, and the corresponding methods were proposed.
     2. Geometric nonlinear space finite element models of Tian Xing-zhou highway/ railway Yangtze River bridge were established. The deflections and stresses of various members of the bridge under the dead load and the live load were studied. The results show that the rigidity is high and the stress is reasonable.
     3. The influence of seasonal temperature difference and sunlight-induced temperature difference to the mechanical behavior was studied. The results show that there exists large stresses at the transverse beam crunodes closing with the main span midspan on the effect of the temperature increase or decrease. But combined the above stresses with the stresses under the first dead load, the second dead load and the live load, the total stresses are less than 200MPa.
     4. Stresses redistribution produced by creep on the concrete of steel-concrete composite railway bridge deck were studied. The results show that stresses in concrete slab become smaller and the stresses in steel beams become larger. The stresses in concrete slab and steel beams are still smaller than the ordainment in criterion after stresses redistribution.
     The research results in this paper provide references for the design of Wuhan TianXing-zhou highway/railway Yangtze River bridge, the basic ideas and methods can be applied to the analysis of other big and complex steel-concrete composite structure cable-stayed bridge as well.
引文
[1] Tang, M. C., Bulkling of cable-stayed girder brides, Struct, 1990, 116(3): 829~849
    [2] Rene Walther, Bernard Houriet, Walmar Isler. Cable-Stayed Bridges. London: Thoms Telford Ltd, 1988.1~15
    [3] Devid P. Billington, Aly Nazmy. History and Aesthetics of Cable-Stayed Bridges. Journal of Structural Engineering, 1990, 117(19): 3103~3134
    [4] M. Ito,Y. Fujino, T. Miyata, N. Narita. Cable-Stayed Bridges: Recent Developments and their Future. Amsterdam: B.V., 1991.56~63
    [5] Podolny, W. Jr, Scalzi. Construction and Design of Cable-stayed Bridges. New York: John Wiley and Sons, 1986.13~25
    [6] H.J. Ernst. Der E-Modul von Seilen unter Beruchsichtigun des Durchanges. Der Bauingeniear, 1965,40(2): 48~53
    [7] [日]小西一郎.钢桥(第四分册).北京:人民铁道出版社,1981.21~23
    [8] 殷万寿,汪绣鹤.世界桥梁技术发展概况.桥梁建设,1981,(1):1~33
    [9] 严国敏.现代斜拉桥.成都:西南交通大学出版社,1996.13~21
    [10] [美]C.P.汉斯,D.A.富尔梅治.现代公路钢桥设计,胡春农.北京:人民交通出版社,1982.7~11
    [11] 胡明义.我国长大桥梁技术发展与展望.第十四届全国桥梁学术会议论文集.上海:同济大学出版社,2000.11~17
    [12] 项海帆.21世纪世界桥梁工程的展望.土木工程学报,2000,33(3):1~6
    [13] 王展意.我国公路桥梁建设的回顾与展望.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,2000.13~19
    [14] 彭宝华.我国公路桥梁的发展趋势.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,2000.33~38
    [15] 戴竞.大跨度桥梁桥型比较.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民文通出版社,2000.58~64
    [16] 曾威.中国大跨径公路桥梁的技术发展特征及趋势.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,2000.71~77
    [17] 经德良.湖北省在建五座长江公路大桥简介.中国公路学会2001年学 术交流论文集.北京:人民交通出版社,2001.179~186
    [18] 林元培.斜拉桥.北京:人民交通出版社,1995.6~19
    [19] 范立础.世界最大跨径的斜拉桥-法国诺曼底(Normandy)大桥的设计及施工.重庆交通学院学报,1995,14(3):1~8
    [20] 周孟波.芜湖长江大桥施工新技术.桥梁建设,2000,(2):14~19
    [21] Michel Virlogeux. The Normandic Bridge, France: A New Record for Cable-Stayed Bridges. Structural Engineering International. 1994,4(4): 208~213
    [22] Man-Chung Tang. Design of Cable-Stsyed Girder Bridges. Journal of Structural Divison, 1972,98(8): 1789~1802
    [23] 李富文,伏魁先,刘学信.钢桥.北京:中国铁道出版社,1999.2~17
    [24] J.G. Crool. Thoughts on the structural efficiency of cable- stayed and catenary suspension bridges(Feature).The Structural Engineer, 1997, 75(10): 44~49
    [25] J.G. Crool, H.C. Dalton, M.J. French. Thoughts on the structural efficiency of cable-stayed and catenary suspension bridges (Correspondence).The Structural Engineer, 1997,75(19): 67~72
    [26] 钱冬生.钱冬生桥梁与教育文选.北京:中国铁道出版社,1998.78~89
    [27] 王伯惠.伶仃洋三大航道桥桥型方案探讨(一)伶仃西桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,2000.1~20
    [28] 王伯惠.伶仃洋三大航道桥桥型方案探讨(二)伶仃东桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,2000.29~43
    [29] 铁道部大桥工程局桥梁科学研究所.斜拉桥.北京:科学技术文献出版社,1992.56~60
    [30] 史永吉.面向21世纪焊接钢桥的发展.第九届中国焊接学会论文集.北京:机械工业出版社,1999.83~88
    [31] 叶梅新,江锋.芜湖桥板桁组合结构的研究.铁道学报,2001,23(5):65~69
    [32] 叶梅新,张晔芝.负弯矩作用下钢-混凝土结合梁性能研究.中国铁道科学,2001,22(5):41~47
    [33] 罗如登,叶梅新.负弯矩作用下结合梁挠度计算方法研究.中国铁道科学,2001,22(5):61~64
    [34] 张晔芝.下承式铁路钢桁结合桥的桥式结构比较.铁道学报,2005,27(5):107~110
    [35] 陈德伟.斜拉桥的非线性分析及工程控制:[博士学位论文].上海:同济大学,1990
    [36] John Fleming. Nonlinear Static Analysis of Cable-Stayed Bridge Structures. Computers & Structures, 1979,10(4): 621~635
    [37] Aly S. Nazmy, Ahmed M. Abdal-Ghaffar. Three dimensional Nonlinear Static Analysis of Cable-stayed Bridges. Computers & Structures, 1990, 34(2): 257~271
    [38] Pao-Haii Wang, Chiung-Guei Yang. Parametric Studies on Cable-Stayed Bridges. Computers & Structures, 1996, 60(3): 243~260
    [39] H. Adeli, J. Zhang. Fully Nonlinear Analysis of Composite Girder Cable-Stayed Bridges. Computers & Structures, 1995, 54(2): 267~277
    [40] 王应良.大跨度斜拉桥考虑几何非线性的睁、动力分析和钢箱粱的第二体系应力研究:[博士学位论文].成都:西南交通大学,2000
    [41] 华孝良,张惠峰.斜拉桥几何非线性简化分析法及其应用.全国桥梁结构学术大会论文集.上海:同济大学出版社,1994.91~97
    [42] 周上君.斜拉桥非线性静力分析.桥梁建设,1982,(4):11~24
    [43] 程庆国,潘家英,高路彬.关于大跨度斜拉桥几何非线性问题.92全国桥梁学术会议论文集.上海:同济大学出版社,1992.48~53
    [44] 李明华,高宗余.武汉天兴洲公铁两用长江大桥正桥的设计.中国铁路,2006,(3):38~41
    [45] 郝超.大跨度钢斜拉桥施工阶段非线性结构行为研究:[博士学位论文].成都:西南交通大学,2001
    [46] ANSYS,Theory Release9.0.USA, 2004
    [47] 万姗姗,李守善.东营黄河公路斜拉桥.土木工程学报,1989,22(3):48~54
    [48] 易继援,刘晓东,刘朝强.南京长江二桥南汊主桥钢箱梁安装施工与工艺控制.第十四届全国桥梁学术会议论文集.上海:同济大学出版社,2000.61~65
    [49] 中华人民共和国交通部标准.JTJ021-89.公路桥涵设计规范.北京:人民交通出版社,1995-8
    [50] 铁道部专业设计院,西南交通大学.钢桥、混凝土桥及结合桥.成都:西南交通大学出版社,1986.68~70
    [51] 交通部重庆公路科学研究所.公路斜拉桥设计规范(试行).北京:人民交通出版社,1997-1
    [52] 陈玉骥,叶梅新.结合钢桁梁活载作用下钢与混凝土弹性模量比的试验研究.铁道学报,2001,23(3):76~81
    [53] 李国平,张哲元.钢-混凝土组合桥混凝土徐变收缩分析.结构分析,1999(1):12~17
    [54] 邱文亮,姜萌,张哲.钢-混凝土组合梁收缩徐变分析的有限元方法.工程力学,2004,21(4):162~166
    [55] 徐劲松.混凝土徐变对钢-混凝土组合结构桥梁长期性能的影响.有色矿山,2003,32(3):38~41
    [56] 周履,陈永春.收缩徐变.北京:中国铁道出版社,1994.12~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700