用户名: 密码: 验证码:
生物质直接制氢的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是未来的理想能源,但它不是一次能源,需要从一次能源转换而来。煤、生物质等含碳能源规模转化制氢是目前全球研究的一个热点。生物质是固定了太阳能的可再生能源,其生长过程是吸收CO_2固定太阳能的过程。从生物质的生长到利用的整个过程来看,生物质规模制氢并回收反应生成的CO_2可以说实现了CO_2的负排放。
     含碳能源直接制氢与传统的煤制氢相比,实现了反应和分离的集成、吸热和放热过程的集成,是一种较为高效的含碳能源制氢方式。本论文基于直接制氢的原理从以下几个方面进行深入研究。
     首先构建生物质直接制氢基本理论模型,用Aspen化工模拟软件对生物质、水与二氧化碳吸收剂等组成的反应体系进行热化学反应分析和模拟,针对不同的入料量及水蒸气量,不同压力、温度等反应条件模拟计算出产品气体组成及含量,分析了温度和压力等反应参数对生物质直接制氢的影响。在此基础上归纳提出生物质直接制氢的理想反应工况范围。
     在理论分析基础上,根据所要实现的反应条件,在煤直接制氢连续实验台的基础上改建了适合生物质的进料装置。对生物质直接制氢进行实验研究,初步研究了温度、压力、吸收剂、催化剂等参数对实验结果影响,得出了生物质直接制氢的适宜工作条件。并且实验中探索了连续运行的操作条件及难点,为生物质直接制氢的放大及中试提供合理依据和参考。
Hydrogen is expected to be an environmentally clean energy in the future. But it is not a kind of primary energy and has to be converted from some kind of primary energy. Hydrogen production from carbonaceous energy, such as coal and biomass, is a hot spot for study in the world. Biomass is a kind of renewable energy that fixes the solar energy. To some extent, hydrogen production from biomass, as well as capturing CO2, can achieve the goal of CO2 negative emission.
     Compared to conventional hydrogen production, direct hydrogen production from carbonaceous energy realizes the integration of reaction and separation processes, and endothermic and exothermic reactions. That is a high efficient way to produce hydrogen. The paper presents studies based on the principle of direct hydrogen production.
     This paper firstly builds a theoretical model of biomass gasification, then introduces Aspen Plus chemical process simulation software to study the effects of temperature, pressure, absorbent and catalyst on hydrogen production from biomass gasification. On this basis the paper summarizes the ideal parameter range of hydrogen production from biomass gasification.
     In order to study the reaction conditions and influencing factors of hydrogen production from biomass, direct hydrogen production from coal experiment facility has been amended. The reactants of the gasification process include biomass, CaO and steam. The facility has the ability to continuously feed the biomass/CaO powder into the reactor at a given pressure. The temperature, pressure, absorbent and catalyst parameters on the experimental results are studied in the continuous experiment facility. During the continuous experiment, the operation conditions and difficulties are also studied.
引文
[1] 肖云汉.煤制氢零排放系统.工程热物理学报,2001,22(1):13-15
    [2] 原鲲.氢能与人类的可持续发展.2003青年氢能论坛
    [3] Timothy Cofey, Dennis R Hardy, Gottfried E. Besenbruch. Hydrogen as a fuel for DOD. Defence Horizons, 2003, 36(11): 1-11
    [4] Michael Jerry Antal, Jr., Supapom Manarungson, and William Shu-Lai Mok. Hydrogen Production by Steam Reforming Glucose in Supercritical Water. Adv. Themochem. Biomass. Convers.(Ed. Rev. Pap. Int. Conf.) 3rd, 1994, 1367-1377
    [5] S. TURN, C. KINOSHITA, Z. ZHANG, An Experimental Investigation Of Hydrogen Production From Biomass Gasification. 1998, 23(8): 64-648
    [6] Adnan Midilli, Murat Dogru, Galip Akay. Hydrogen production from sewage sludge via a fixed bed gasifier product gas. International Journal of Hydrogen Energy, 2002, 27: 1035-1041
    [7] H. Schmieder, J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, M. Schacht. Hydrothermal gasification of biomass and orgnanic wastes. Journal of Supercritical Fluids, 2000, 17: 145-153
    [8] Ayhan Demirbas. Hydrogen-rich gas from fruit shells via supercritical water extraction. International Journal of Hydrogen Energy, 2004, 29: 1237—1243
    [9] 郝小红,郭烈锦.超临界水生物质催化气化制氢实验系统与方法研究.中国工程热物理学会第十届年会工程热力学与能源利用学科论文集,2001,青岛
    [10] 阴秀丽,吴创之,徐燕冰等.生物质气化对减少 CO_2 排放的作用.太阳能学报,2000,21 (1):40-44
    [11] 闫桂焕,孙立,许敏.生物质热化学转化制氢技术.可再生能源,2004, (4):33-36
    [12] 徐振刚,吴春来.煤气化制氢技术.低温与特气,2000,18 (6):28-31.
    [13] Federal Energy Technology Center Office of Fossil Energy. U. S. Department of Energy. Vision 21 Program Plan, 1999
    [14] U. S. Department of Energy, Vision 21 Technology roadmap. 1999
    [15] A. Robertson. Development of Foster Wheeler's Vision 21 Partial Gasification Module. Vision 21 Program Review Meeting, Morgantown, West Virginia, 2001
    [16] Scott M. Klara, World's First, Coal-based Zero-emission Electricity and Hydrogen Plant NARUC Meeting. 2003
    [17] Hans-Joachim Ziock, Klaus S. Lackner, Douglas P. Harrison. ZERO EMISSION COAL. LA-UR-00-1765, 2000, http://www.zeca.org/docs.html
    [18] Hans-Joachim Ziock, Klaus S. Lackner. Overview of the ZECA(Zero Emission Coal Alliance) Technology. LA-UR-00-6002, 2000, http://www.zeca.org/docs.html
    [19] Shi Ying Lin, Yoshizo Suzuki, Hiroyuki Hatanoel et al. Innovative Hydrogen Production by Reaction Integrated Novel Gasification Process. Proceedings of ECOS'99, Japan, Tokyo, 1999
    [20] Shi Ying Lin, Michiaki Harada, Yoshizo Suzuki et al. Hydrogen Production by Integrating Gasification and CO_2 absorption (HyPr-RING). 11th International Conference on Coal Science, USA, San Francisco, 2001
    [21] Shi Ying Lin, Michiaki Harada, Yoshizo Suzuki and Hiroyuki Hatano. Hydrogen production from coal by separating carbon dioxide during gasification. Fuel, 2002, 81: 2079-2085
    [22] Sift Ying Lin, Yoshizo Suzuki, Hiroyuki Hatano et al. Producing Hydrogen from Coals by Using A Method of Reaction Integrated Novel Gasification (HyPr-RING). 16th Int. Pittsburgh Coal Conference, US. Pittsburgh, 1999
    [23] Toshiaki Hanaoka, Takahiro Yoshida. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass and Bioenergy 28 (2005) 63
    [24] 阎跃龙,肖云汉等.含碳能源直接制氢的实验研究.工程热物理学报.Vol.24,No.5,Sep.2003
    [25] Xiao, Yunhan, et al. Process Analysis of Hydrogen Production by Reaction Integrated Novel Gasification (HyPr-RING). Preprint of and Presentation in the 65th Annual Meeting of Society of Chemical Engineering, Japan, March 29, 2000
    [26] Antonia Moropoulou, Asterios Bakolas, Eleni Aggelakopoulou. The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cement and Concrete Research, 2001, 31: 633-639
    [27] F. Garcia-Labiano, A. Abad, L. F. de Diego, P. Gayan, J. Adanez. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 2002, 57: 2381-2393
    [28] Scott M. Klara, World's First, Coal-based Zero-emission Electricity and Hydrogen Plant NARUC Meeting. 2003
    [29] M. C. Fuerstenau, C. M. Shen, B. R. Palmer. Liquidus Temperature in the CaCO_3- Ca(OH)_2-CaO and CaCO_3-CaSO_4-CaS Ternary Systems. 1. Ind. Eng. Chem. Process Des. Dev., 1981, 20: 441-443
    [30] Guanwen Xu, Takahiro Murakami, Toshiyuki Suda et al. Distinctive Effects of CaO Additive on Atmospheric Gasification of Biomass at Different Temperatures. Ind. Eng. Chem. Res., 2005, 44(15): 5864-5868

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700