用户名: 密码: 验证码:
新型齿形链的啮合机制与动力学建模及齿形链导板的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是已完成国家自然科学基金资助项目“新型高速齿形链啮合原理及其设计方法(50275062)”内容的延续,也是正在运行中的国家自然科学基金“新型Hy-Vo齿形链的啮合机理及其设计方法(50575089)”的重要组成部分。
     论文分析研究了外啮合齿形链、内外复合啮合齿形链与渐开线链轮的啮合原理,在不考虑工作链板孔和销轴之间的间隙的前提下,分别建立了外啮合齿形链、内外复合啮合齿形链与渐开线链轮啮合机制的数学模型,为新型齿形链的设计提供了理论依据;分析研究了齿形链的动力学特性,分别建立了运动过程中外啮合齿形链与渐开线链轮啮入冲击的数学模型和内外复合啮合齿形链与渐开线链轮的啮入冲击与交变冲击的数学模型;通过分析齿形链导板对链条受力与性能的影响,提出了不同齿形链导板的设计方法,同时通过台架试验研究,验证了齿形链导板对链条的影响以及设计方法的合理性与可行性。
     论文的研究成果为我国自主研发高质量的新型齿形链提供了新的设计依据和设计方法。目前,论文的部分研究成果已成功应用于相关行业与企业,并带来了良好的经济效益与社会效益。
Based on research findings about important phase of National Natural Science foundation of China(50275062) that has been finished, and in the support of the project of National Natural Science foundation of China– the meshing mechanism and the design method of neotype Hy-Vo chain(50575089), this paper analyses silent chain meshing with outside flanks and meshing mechanism and dynamics characteristics of neotype silent chain meshing with inside and outside flanks and involutes sprocket, and establishes meshing mechanism model as well as approach shock model during meshing; otherwise, according to analyzing the influence of silent chain on the force and performance of chain, it put forward design methods of guide board of different silent chain. Through the study on bench test, it validates the influence of guide board of silent chain on chain.
     An ideal math model of tooth profile of involute chain wheel is established, which is based on gear meshing principle and the relationship between involute and chain wheel. The establishment of this model provides an effective tool to analyze neotype silent chain and mechanics as well as dynamics characteristics of involute chain wheel meshing drive.
     Based on analyzing silent chain meshing with outside flanks and the meshing principle of chain wheel, without regard for the gap between link joint hole of silent chain and pin roll, a meshing model between silent chain meshing with outside flanks and involute chain wheel is established through coordinate conversion. This paper gives the equation of solving the position of initial meshing point and the equation of the position of location meshing point. After the real parameters of silent chain and chain wheel are input into the model and calculated, without considering the assembly gap, the approach course of the external mesh silent chain and involute curve sprocket-wheel is allocated instantly on the mathematical theory.
     In the paper, the tooth meshing principle of the new type internal and external compound geared silent chain and sprocket-wheel is analyzed, on the base of the meshing model of external silent chain and involute curve sprocket-wheel, The location and the initial approach moment of the new type internal and external geared silent chain and sprocket-wheel, and when the initial mesh changes to the external mesh, the alternating point location and alternating moment are studied. Further more their mathematical solving model is also given in the paper. Meantime after the actual parameters of the chain and sprocket is put into model and calculated, the important conclusion, that the tangent point location of the former chain internal arc and involute curve sprocket-wheel is lower than that of the later plate external straight flange, is gotten.
     In the paper, on the base of the meshing model of the external meshing silent chain and involute curve sprocket-wheel and the meshing model of the internal and external compound geared silent chain and sprocket-wheel found in front, by analyzing the dynamics character of tooth chain and involute curve sprocket-wheel, the approach shock model of the external meshing silent chain and involute curve sprocket-wheel and the approach shock model and the alternating shock model of the internal and external compound geared silent chain and sprocket-wheel are respectively found. By analyzing the approach shock model of the internal and external compound geared silent chain and sprocket-wheel, it is found that the approach shocking doesn’t appear in theory, when the line linking silent chain internal arc center and the initial meshing point is the normal line of the sprocket-wheel meshing point. Further more, by analyzing the alternating shock model, it is found that the tangent point location of the former chain internal arc and involute curve sprocket-wheel and that of the later plate external straight flange is in the same location with no impact. These provide the theoretical foundation for designing high-performance chain in the future.
     The effect the tooth chain guide plate having on the stress and property is studied and the method designing the guide plate. To meet the assembly requirement, there is a assembly gap between chain plate hole and pin roll. The gap lead that in the process of chains beginning to be stressed for a row of chain having guide plate only guide plate is stressed , which easily lead to failure. In order to make the chain plate be entirely stressed under work load. The shape and size of guide plate should be designed rationally, which the extension compensation rate of chain plate comes up to the assembly gap in the case of the chain stressing smaller force. The advantage and disadvantage of the normal guide plate and the butterfly-shaped guide plate are analyzed, and further their design method are given in the paper. Besides when the guide plate bearing a certain force, its force and deformation is analyzed with the finite-element software—ansys. Then, for the butterfly-shaped guide, without affecting the strength of guide plate, the longer the butterfly-shaped plate waist top arc radius RG is ,the better the butterfly-shaped plate is. The size of waist median is H G>1/2 H . The arc height of guide plate bottom is increased as possible, and the top arc lower-most point had better not be lower that the linking center line of guide plate holes. in addition, by testing CL04-5,C3-11, C3T-9 and 10×11 film Hy-Vo that its pitch is 9.525, it is proved that the essentiality and feasibility of the viewpoint which by rationally designing guide plate the assemble gap of chain plate hole and pin roll put forward in the paper can be effectively compensated in the course of chain being stressed. Further more the experiment proves the rationality of the design method of the silent chain guide plate, which provides an important gist for designing guide plates.
引文
1. 孟繁忠. 链条链轮产品设计与检验(专著).北京:机械工业出版社,1996.
    2. 郑志峰、王义行、柴邦衡.链传动.北京:机械工业出版社.1984.12
    3. 德国 IWIS 链条产品样本,2004
    4. 美国 Morse 链条产品样本,2005
    5. 英国 Renold 链条产品样本,2005
    6. 日本椿本链条产品样本,2004
    7. 日本 DID 链条产品样本,2006
    8. 株式會社椿本チエイン编. チエーン. 東京: 工業調查會.1995
    9. 宣碧华.由链条生产大国向链条生产强国进军.机械传动与零部件.2003.展会特辑.5-6
    10. 张经源.链条传动及制造.杭州:浙江大学出版社,1989
    11. 冯增铭.微型齿形链新齿形设计方法.[硕士学位论文].长春:吉林工业大学,2002
    12. G. S. Chirikjian. A Dynamic Analysis of the Oscillations in a Chain Drive. Journal of Mechanical Design, SEPTEMBER 2001, Vol.123/395~401
    13. 张克仁. 新型齿形链传动的准共轭啮合. 机械设计与研究. 1996.3. 31-33
    14. 王吉民.齿形链和渐开线齿形链轮的啮合设计.机械设计.1996 年7月
    15. 杨家军、张卫国.机械设计基础.武汉:华中科技大学出版社.2003.10
    16. 傅则绍. 微分几何与齿轮啮合原理,东营:石油大学出版社. 1999
    17. 董学朱. 齿轮啮合理论基础,北京:机械工业出版社, 1989
    18. [苏联] Φ. JI李特文.齿轮啮合原理.上海科学技术出版社.1984
    19. 冯德坤. 包络原理及其在机械方面的应用,北京:冶金工业出版社, 1994
    20. Meng Fanzhong,Feng Zengming,Chu Yaxu. Meshing Theory and Design Method of a New Silent Chain and Sprocket. CHINESE JOURNAL OF MECHANICAL ENGINEERING(机械工程学报英文版),2006.19(3):425-427
    21. 孟祥鑫,冯增铭. 基于 ADAMS 的新型齿形链啮合仿真分析. 机械设计与研究.2004.20(9):31-32
    22. 冯增铭,孟繁忠,李纯涛. 新型齿形链的啮合机制及仿真分析. 上海交通大学学报.2005.39(9):1427-1430
    23. 徐涛.数值计算方法.长春:吉林科学技术出版社.1998
    24. 梁肇军.Mathematic 软件简明教程.武汉:华中师范大学出版社.2002
    25. 裘宗燕.Mathematic 数学软件系统的应用程序.北京:北京大学出版社.1994
    26. [美] D.尤金. Mathematic 使用指南.北京:科学出版社.2002
    27. Н.В.Боробьев,Цепные передачи,1968
    28. М.В.Райко,Расчет детапей н уэпов мащин,1966
    29. Masao Maruyamam,Masaru morimoto.Silent Chain Having Improved Noise Reduction,United state patent No.5267910,Dec.7,1993
    30. Hiroyuki Takeda , Tetsuji Kotera , Low Noise Chain Drive,United state patent No.5419743,May.30,1995
    31. 薛云娜,王勇,王宪伦. 齿形链传动啮合冲击机理. 机械设计.2005.22(9):37-39
    32. 吉林工大链传动研究室.不标准齿形传动链及其链轮齿形与公差简介.机械工业标准化,No10,1979
    33. Makoto Kanehira et al. Silent chain,United state patent No. 6159122, Dec.12, 2000
    34. Tetsuji Kotera. Link plate for a Silent Chain, United state patent No.0045388, Mar.6, 2003
    35. 陈塑寰,聂毓琴,孟广伟.材料力学.长春:吉林科学技术出版社.2000
    36. 陈亦兵.链条行业制造技术装备现状及前景机械传动与零部件.2003.展会特辑.48-50
    37. 李宝林.发动机正时链系统设计方法与性能试验.[博士学位论文].长春:吉林大学,2006
    38. 荣长发、杨国欣、陈岚.链板挤孔强化处理对其疲劳强度的影响.农机与技术,1996,2:33~34
    39. 刘锁.金属材料的疲劳性能与喷丸强化处理.北京:国防工业出版社.1997
    40. 龚曙光.ANSYS 工程应用实例解释.北京:机械工业出版社.2003
    41. 邢静忠,王永岗,陈晓霞等.ANSYS7.0 分析实例与工程应用.北京:机械工业出版社.2004
    42. 叶先磊,史亚杰.ANSYS 工程分析软件应用实例.北京:清华大学出版社.2003
    43. 荣长发、李欣欣、杨国新等. 链条预拉强化处理的研究及预拉机的设计. 试验技术与试验机,1996,第 1 期,15~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700