用户名: 密码: 验证码:
煤及海相页岩的生排烃动力学实验及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作着重于以下几个问题:煤和海相页岩的生烃能力如何?主生烃期和生烃速率是什么?煤和海相页岩的排烃时机、机理和特征是什么?煤及海相页岩残余生烃潜力及二次裂解生烃特征是什么?各章节也基本按照这些问题展开。本研究主要进行了煤及海相页岩的初次生烃动力学实验,全岩热模拟排烃实验和不同母质的生气动力学研究。取得的主要成果如下:
     本论文通过生烃动力学模拟实验得出海相页岩比煤具有更大的生烃能力,不仅生烃速率大,而且生烃持续的时间也长。主生烃期分别为:海相页岩Ro(%)=0.71~1.1%、煤Ro(%)=0.72~1.23%;在升温速率为5℃/Ma情况下,主生烃期对应的地质温度范围分别为海相126~160.5℃、煤128~168.5℃;海相页岩主生烃期范围比煤岩窄。
     通过利用更接近实际地质情况的块状样品进行排烃模拟实验,可以看出煤和海相页岩都是先达到生烃高峰,后达到排烃高峰,煤中残留烃的量要比海相页岩大,其吸附能力比海相页岩的强,因此煤中的烃更不容易排出;海相源岩的主排烃期为Ro=0.7-1.26%,煤的主排烃期为Ro=0.71-1.3%;升温速率对残留烃的影响也很大,升温速率快,加热的时间短,排出烃量相对比较少,所以残留的烃就比较多。
     海相页岩的氢指数(HI)要比煤的大,说明海相页岩的生油能力要比煤的强;海相的排烃率要比煤的大,这是因为煤的吸附性比较强,排烃效率要小一些。不同的升温速率对排烃率也有一定的影响,慢速升温下的排烃率变化要比快速升温下变化慢,但是二者的变化曲线是基本一致的,说明对于煤和海相页岩来说,母质不同是造成其排烃率存在差距的根本原因。
     通过生排烃和二次裂解生气的比较,可以发现:高过成熟阶段海相地层主要是以排出的油藏或输导层中原油裂解气为主。在排烃结束之前(Ro<1.3%),煤成气有两个来源,一是初始的干酪根生成的气,二是生成的液态烃裂解成气。在排烃结束以后(Ro>1.3%),煤本身生成的气很少,煤成气大部分来自于排出的油裂解气。
     我们通过生烃,排烃和生气三者结合来看,川东北地区下二叠统进入生排烃比较晚的地区,排烃率比较小,残留烃量比较大,所以生气强度比较大,就比较容易形成好的残余烃裂解型气源灶。高效气源灶主要位于开县-达县-平昌-渠县-梁平一线。
This paper is focusing on the following questions: What is the hydrocarbon generating capability of coal and marine shale? What are their main hydrocarbon generating stages and generating rates? What are the main hydrocarbon expulsion stages, mechanism and characteristics of coal and marine shale? What are the hydrocarbon generation potentials and their secondary cracking characteristics for coal and marine shale? The following chapters will answer these questions one by one. The kinetic experiments of primary hydrocarbon generation of coal and marine shale, whole rock expulsion and the gas generation kinetics of different precursors are performed in this paper.
     The kinetic experimental results of hydrocarbon generation indicate that the hydrocarbon generating capability of marine shale is larger than that of coal, not only in much higher hydrocarbon generating rate, but also in much longer hydrocarbon generating time. The main hydrocarbon generating stage of coal is Ro(%)=0.72-1.23%, while marine shale is Ro(%)=0.71-1.1%. In the geologic heating rate of 5℃/Ma, the corresponding geologic temperatures of main hydrocarbon generating period are 126-160.5℃for marine shale and 128-168.5℃for coal respectively, which shows that marine shale's main hydrocarbon generating period is narrower than that of coal.
     A lumpy rock sample is used in the generation-expulsion experiment in order to truly simulate the real geological condition. It can be found that both coal and marine shale reach hydrocarbon generation peak firstly and then hydrocarbon expulsion peak afterwards. The quantity of retained hydrocarbon in coal is larger than that of marine shale. This increases the difficulty of hydrocarbon generated in coal to be expulsed because coal's absorbability is stronger than marine shale's. The main hydrocarbon expulsion stage is Ro=0.7-1.26% for marine shale and Ro=0.71-1.3% for coal. The quantities of retained hydrocarbon in marine shale and coal are also affected by heating rate. In the case of fast heating rate, the expulsed quantity of the hydrocarbon will decrease which leads to the increase of retained hydrocarbon.
     The Hydrogen Index (HI) of marine shale is larger than that of coal, which indicates that the hydrocarbon generation capability of marine shale is larger than that of coal. In addition, marine shale's hydrocarbon expulsion rate is higher than coal's for the reason that coal has strong absorbability, which hinders its expulsion efficiency. The hydrocarbon expulsion rate is also affected by the heating rate. The results show that it changes quickly under faster heating rate. However, both fast and slow heating rates show the same change trend, which indicates that the precursor is the major control for causing different hydrocarbon expulsion efficiency fundamentally.
     It can be found after comparing the hydrocarbon generation, expulsion and secondary cracking to gas that the main source of natural gas is from secondary cracking of oil in the reservoirs and the conducting strata in high-over maturation marine strata, The coal-associated gas generated from hydrocarbon-expulsion has two resources before expulsion (Ro<1.3%): one is the gas generated by primary cracking of kerogen, another is from the generated liquid oil before expulsion. After the hydrocarbon expulsion (Ro<1.3%), the coal associated gases are mainly from the natural gas generated from cracking of oil.
     In view of generation, expulsion and secondary cracking gas, the lower Permian of northeast Sichuan was taken as an evaluation target. Calculating results show that the hydrocarbon generation and expulsion time is relatively late and the hydrocarbon expulsion efficiency is low. The secondary gas generation intensity is very larger due to the large quantity of retained hydrocarbons in marine source rocks, which is easier to form the good retained-hydrocarbon-type gas source kitchen. The high effective gas source kitchens are located in the areas along Kaixian, Daxian, Pingchang, Quxian and Liangping.
引文
1.蔡立国,饶丹,潘文蕾等.川东北地区普光气田成藏模式研究.石油实验地质.2005,27(5):462-468.
    2.陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨.石油勘探与开发.1997,24(1) :1-5.
    3.陈晓东,王先彬.压力对有机质成熟和油气生成的影响.地球科学进展.1999,14(1):31-35.
    4.陈中红,查明.尔营凹陷烃源岩排烃的地质地球化学特征.地球化学.2005,34(1):79-87.
    5.陈中红,查明.烃源岩排烃作用研究现状及展望.地球科学进展.2005,20(4):459-466.
    6.程顶胜,郝石生.烃源岩热模拟实验研究的进展.石油大学学报(自然科学版).1995,79(2):107-115.
    7.程克明,关德师,程建平等.烃源岩产烃前的热压模拟实验及其在油气勘探中的应用.石油勘探开发.1991,5:1-10.
    8.程克明,熊英,刘新月.煤系源岩倾油倾气性研究.沉积学报.2004,22(增刊) 56-60.
    9.程克明,熊英,孙万高.煤结构组成与成烃作用.新疆石油地质.2004,25(4) 352-356.
    10.方杰,刘宝泉,郭数之,顾连兴,刘井旺.张家口下花园青白口系下马岭组灰质页岩热模拟实验.高校地质学报.2002,8(3):345-35.
    11.傅家谟,秦匡宗,王延芬等.干酪根地球化学.广东科技出版社,1995:541-566.
    12.付少英,彭平安,张文正等.鄂尔多斯盆地上古生界煤的生烃动力学研究.中国科学(D辑).2002,32(10):812-819.
    13.高岗,王庭斌,韩德磬.两种海相未成熟烃源岩热解气特征比较研究.石油实验地质.2003,25(2):197-203.
    14.高喜龙,肖贤明,刘中云等.用开放体系的热解方法对烃源岩生烃动力学的研究:以东营凹陷某生油岩为例.地球化学.2003,32(5):486-491.
    15.耿安松,廖泽文.不同母质来源的沥青质热解动力学研究.科学通报.2000,45(增刊):2743-2749.
    16.何光玉,程荣书,张家晔.辽河盆地桃园—荣兴屯地区煤成烃模拟.断块油气田.1997,4(3):6-9.
    17.胡祥云,李思田,解习农.有机质成烃动力学模型研究综述.地质科技情报.2900,19(1):65-68.
    18.黄弟藩,李晋超,周翥虹等.陆相有机质演化和成烃机理.北京:石油工业出版社,1984.
    19.黄第藩,卢双舫.煤成油地球化学研究现状与展望.地学前缘.1999,6(增刊):183-194.
    20.黄第藩,秦匡宗,王铁冠,赵锡嘏等.煤成油的形成和成烃机理.北京:石油工业出版社,1995。
    21.黄第藩,熊传武.含煤地层中石油的生成、运移和生油潜力评价.勘探家.1996,1(2):6-12.
    22.黄建章,陈心胜,周国源等.川东石炭系气水理化性质与天然气富集关系.石油与天然气地质.1994,15(4):286-294.
    23.黄志龙,钟宁宁,赵喆.碳酸盐岩有效排烃动力条件与临界有机质丰度关系.石油勘探与开发.2005,32(6):25-28.
    24.蒋启贵,王勤,承秋全等.不同组分烃源岩生烃动力学特征浅析.石油实验地质.2005,27(5):512-520.
    25.李传亮.油气初次运移机理分析.新疆石油地质.2005,26(3):331-342.
    26.李明诚.石油与天然气运移.北京:石油工业出版社.1994:32-89.
    27.李术元,郭绍辉,徐红喜等.烃源岩热解生烃动力学及其应用.沉积学报.1997,15(2):138-141.
    28.李贤庆.天然气生烃动力学研究及应用—以塔里木盆地前陆区为例.中国科学院广州地球化学研究所博士后研究工作报告.2001
    29.李贤庆,肖贤明,Tang Y等.库车坳陷侏罗系煤岩生烃动力学研究.新疆石油地质.2003,24(6):487-490.
    30.李贤庆,肖贤明,Tang Y等.塔西南坳陷烃源岩生烃动力学研究.江汉石油学院学.2004,6(3):1-4.
    31.李贤庆,侯读杰,胡国艺等.鄂尔多斯盆地中部地区下古生界碳酸盐岩生烃潜力探讨.矿物岩石地球化学通报.2002,21(3):152-158.
    32.李贤庆,肖贤明,米敬魁等.塔里木盆地库车坳陷中生界烃源岩生烃动力学参数研究.煤田地质与勘探.2005,33(4):36-40.
    33.李贤庆,肖贤明,米敬魁等.应用生烃动力学方法研究库车凹陷烃源岩的生烃史.煤田地质与勘探.2005,33(5):30-35.
    34.梁卫,覃建雄.川东石炭系天然气成因类型和气源探讨.中国海上油气.1995,9(2):97-102.
    35.刘德汉,傅家谟.煤成气利煤成油产出阶段和特征的初步研究.天然气勘探.北京:石油工业出版社,1986.
    36.刘德汉,傅家谟,肖贤明等.煤成烃的成因与评价.石油勘探与开发.2005,32(4):137-140.
    37.刘德汉,张惠之,戴金星等。煤岩显微组分的成烃实验研究与评价.科学通报.2000,45(4):346-352.
    38.刘光祥,陶静源,潘文蕾等.川东北及川东区天然气成因类型探讨.石油实验地质.2002,24(6):513-518.
    39.刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报.1998,43(11):1187-1190.
    40.龙祥胜,曾涛,李检龙.川东北二叠三叠系天然气勘探方向.石油与天然气地质.1996,17(2):134-140.
    41.卢双舫,付晓泰,王振平等.煤岩有机质成油、成气热模拟动力学模型及其标定.地质科学.1996,31(1):15~21.
    42.罗佳强,沈忠民.油页岩在渤海湾盆地济阳坳陷下第三系石油资源评价中的意义.石油实验地质.2005,27(2):164-169.
    43.罗秋霞.中国东部某些盆地下第三系生油岩演化的数字模拟.石油实验地质.1980,2:37-43.
    44.马永生,傅强,郭彤楼等.川东北地区普光气田长兴—飞仙关气藏成藏模式与成藏过程.石油实验地质.2005,27(5):455-460.
    45.孟元林,肖丽华.油气生成的化学动力学模型和煤成气数值模拟.中国海上油气.1995,9(1):27-31.
    46.米敬奎,李新虎,刘新华等.利用生烃动力学研究鄂尔多斯盆地台升后上古界源岩生气作用结束时间.地球化学.2004,33(6):262-268.
    47.牟传龙,谭钦银,余谦等.川东北地区上二叠统长兴组生物礁组成及成礁模式 沉积与特提斯地质.2004,24(3):2-7.
    48.庞雄奇,陈章明,陈发景.含油气盆地地史、热史、生留排烃史数值模拟研究与烃源岩定量评价.北京:地质出版社,1993:72~78
    49.钱吉盛,陈一平.反应温度、时间对腐泥型干酪根热解成油规律初探.石油与天然气地质.1991,2:207-216.
    50.秦建中,金聚畅,刘宝泉.海相不同类型烃源岩有机质丰度热演化规律研究.石油与天然气地质.2005,26(2):178-183.
    51.秦建中,刘宝泉,国建英等.关于碳酸盐烃源岩的评价标准.石油实验地质.2004,26(3):281-285.
    52.帅燕华.天然气组分及碳同位素动力学研究及地质应用.中国科学院研究生院博士学位论 文.2004.
    53.宋岩,赵文智,夏新宇,等.论我国天然气勘探方向的转移.天然气工业.2000,20(2):3-7.
    54.汤达祯,王激流,林善园等.煤二次生烃作用程序热解模拟试.石油实验地质.2000,22(1):10-18.
    55.王东良,李欣,李书琴等.未成熟-低成熟煤系烃源岩生烃潜力的评价——以塔东北地区为例.中国矿业大学学报(自然科学版).2001,30(3):317-322.
    56.王建宝.东营凹陷烃源岩生烃动力学研究.中科院研究生院博士学位论文.2002.
    57.王建宝,肖贤明,郭孺泰等.渤海湾盆地东营凹陷烃源岩生烃动力学研究.石油实验地质.2003,25(4):403-408.
    58.王克,查明.考虑烃源岩非均质性的排烃模型.石油与天然气地质.2005,26(4):440-443.
    59.王铁冠,钟宁宁,熊波等.烃源岩生烃潜力有机岩石学评价方法.石油学报.1994,15(4):9-17.
    60.王云鹏,耿安松,刘德汉等.页岩煤沥青和源油的生气实验研究.沉积学报.2004,22(增刊):107-112.
    61.王云鹏,赵长毅,王兆云等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用.石油勘探与开发.2005,32(4):153-159.
    62.解启来,周中毅.利用干酪根热解动力学模拟实塔里木盆地下古生界古地温.地球科学—中国地质大学学报.2002,27(6):767-769.
    63.解习农,刘晓峰,胡祥云,等.超压盆地中泥岩的流体压裂与幕式排烃作用.地质科技情报.1998,17(4):59-64.
    64.熊永强,耿安松,刘金钟等.生烃动力学模拟实验结合GC-IRMS测定在有效气源岩判识中的应用.地球化学.2002,31(1):21-27.
    65.熊永强,耿安松,王云鹏等.干酪根二次生烃动力学模拟实验研究.中国科学.2001,31(4):315-320.
    66.谢增业,蒋助生,张英等.全岩热模拟新方法及其在气源岩评价中的应用.沉积学报.2002,20(3):510-514.
    67.谢增业,田世澄,魏国齐等.川东北飞仙关组储层沥青与古油藏研究.天然气地球科学.2005,16(3):282-287.
    68.徐国盛,赵异华.川东开江古隆起区石炭系气藏成藏机理剖析.石油实验地质.2003,25(2):158-164
    69.徐言岗,贺自爱,曾凡刚.川东北天然气成藏特征.石油与天然气地质.2004,25(3):274-279.
    70.杨国华,吴肇量,徐伟民等.不同类型干酪根生烃动力学研究(二).石油大学学报.1990,14(2):74-80.
    71.杨晓萍,赵文智,曹宏等.川东北三叠系飞仙关组鲕滩气藏有利储集层的形成与分布.石油勘探与开发.2006,33(1):17-22.
    72.曾云贤,刘微,李西宁.川东北地区飞仙关组构造演化与油气成藏研究.天然气工业.2005,25(增刊A):21-25.
    73.张润合,郑兴平,徐献高等.鄂尔多斯盆地上三叠统延长组四、五段泥岩生烃潜力评价.西安石油学院学报(自然科学版) 2003,18(2):10-16.
    74.赵长毅,成克明.煤成油排驱机理与初次运移.中国科学(D辑).1998,28(1):47-52.
    75.赵桂瑜,刘洛夫,李术元.爱沙尼亚干酪根催化降解生烃过程及动力学研究.沉积学报.2004,22(3):225-227.
    76.赵梦军,卢双舫.原油裂解气—天然气重要的生成途径.地质论评.2000,46(6):646-654.
    77.赵文智,汪泽成,王红军等.近年来我国发现大中型气田的地质特点与21世纪初天然气勘探前景.大然气地球科学.2005,16(6):687-692.
    78.钟宁宁,卢双舫,黄志龙,张有生.烃源岩TOC值变化与其生排烃效率关系的探讨.沉积学报,2004,22(增刊):74-80.
    79.周杰,庞雄奇,李娜.渤海湾盆地济阳坳陷烃源岩排烃特征研究.石油实验地质.2006,28(1):59-64.
    80.朱光有,金强,张水昌等.济阳坳陷东营凹陷古近系沙河街组深湖相油页岩的特征及成因.古地理学报.2000,7(1):60-70.
    81. Anthony D B, Howard J B, Coal devolatilization and hydrogasification. AICHE J. 1996,22(4),625-656.
    82. Baker, C., Wang, L. and Butler, E. B. 1989. Distribution of bitumens in shales and its significant for petroleum migration. Presented at the 14th International Meeting on Organic Geochemistry, Paris, France.
    83. Behar, F., Lewan, M.D., Lorant, F., Vandenbroucke, M., Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions.Organic Geochemistry. 2003,34 (4):575-600.
    84. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalie, J., Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org. Geochem. 1997,26:321-339.
    85. Behar F. Budzinski H. Vandenbroucke M. Tang Y. Methane generation from oil cracking kinetics of 9-methylpehenanthrene cracking and composition with other pure compounds and oil fractions. Energy & Fuels. 1999,471-481.
    86. Bjoroy, M., Hall, P. B., Hustad, E. and Williams, J. A. (1992 ) Variation in stable isotope ratios of individual hydrocarbons as a function of artificial maturity. In advances in Organic Geochemistry 1991 (Edited by Eckardt C. B. et al.) . Org. Geochem. 19, 89-105. Pergamon Press,Oxford.
    87. Bjor(?)y, M., Hall, K., Gillyon, P., Jumeau, J. Carbon isotope variations in n-alkanes and isoprenoids of whole oils. Chemical Geology. 1991. 93, 13-20.
    88. Bjor(?)y, M., Hall, K., Moe, R.p.. Stable carbon isotope variations in n-alkanes in Central Graben oils. Organic Geochemistry. 1994, 22,355-381.
    89. Bond, R.L., 1956. Capillary structure of coals. Nature 178,104-105.
    90. Bonilla, J. V. and Engel, M, H. Chemical and isotopic redistribution of hydrocarbons during migration: Laboratory simulation experiments. In Advances in Organic Geochemistry, 1985, Vol. 10,pp.181-190.
    91. Boreham C. J. Horsfield B. and Schenk H. J. Predicting the quantities of oil and gas generated fromAustralian Permian coals, Bowen Basin using pyrolyticmethods. Marine and Petroleum Geology. 1999, 16 (2): 165-188.
    92. Brodskii, A. M., Kalinenko, R. A., Lavroskii, K. P.: On the kinetic isotope effect in cracking of neopentane. Geochimica et Cosmochimica Acta. 33: 811-820.
    93. Chen Jianping, Qin Yong, Huff Bryan G., Wang Darui, Han Dexin and Huang Difan. Geochemical evidence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin, Northwest China. Organic Geochemistry. 2001, 32,1103-1125.
    94. Dickey P A. Possible migration of oil from source rocks in oil phase. AAPG Bulletin. 1975, 72: 337-345.
    95. Dieckmann V. Fowler M. Horsfield B. Predicting the composition of natural gas generated by the Duvernay Formation (Western Canada Sedimentary Basin) using a compositional kinetic approach. Organic Geochemistry. 2004, 35 (7): 845-862.
    96. Duppenbecker S J. Welte D H. Petroleum expulsion from source rocks-insights from geology,geochemistry and computerized numerical modeling. In: Proceedings of the 13th World Petroleum Congress. New York: Wiley,1992. 165-177.
    97. Durand B. Understanding of HC migration in sedimentary basins (present state of knowledge). Organic Geochemisty, 1988,13: 445-459.
    98. Hayes J B. Porosity evolution of sandstones related to vitrinite reflectance. Organic Geochemistry. 1991, 17 (2): 117-129.
    99. Hunt J M. Petroleum Geochemistry and Geology. San Francisco: Freeman, 1979:617
    100. Hunt J M. Generation and migration of petroleum abnormally pressured fluid compartments. AAPG Bulletin, 1990,74: 1-12.
    101. Leythaeuser D,Poelchau H S. Expulsion of petroleum from type III kerogen source rocks in gaseous solution: Modeling of solubility fractionation. In: England W A,Fleet A J,eds. Petroleum Migration. Geological Society, 1990,59: 3346.
    
    102. Lidke R,Leytbaeuser D. Migration of oil and gas in coals. In: Fleet A J ed. Coal Coal-Bearing Strata as Oil-Prone Source Rocks? London: Geological Society Special Publication No. 77. 1994,219-236.
    
    103. Inan S,Yalcin M N,Mann U. Expulsion of oil from petroleum source rocks: Inferences from pyrolysis of samples of unconventional grain size. Organic Geochemistry, 1998,29 (1 ~3) : 45-61.
    104. Pepper A S,Corvi P J. Simple kinetic models of petroleum formation. Marine and Petroleum Geology, 1995,12: 417-452.
    105. Price L C Primary petroleum migration from shales with oxygen-rich organic mailer. Journal of Petroleum Geology,1989,12: 289-324.
    106. R. Sykes, L.R. Snowdon,2002,Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Organic Geochemistry 33 (2002) :1441—1455
    107. Sassen R,Moore C H,Meenden F C. Distribution of hydrocarbon source potential in the Jurassic Smackover Formation. Organic Geochemistry, 1987,11: 379-383.
    108. Tissot B, B Durand. Influence of natures and diagenesis of organic matter in formation of petroleum. AAPG Bull., 1974,58(3): 438-459
    109. Tissot B P, D Welte. Petroleum formation and occurrence: a new approach to oil and gas exploration. Berlin: Springer-Verlag, 1978: 699.
    110. Ungerer B P. State of the art research in kinetic modeling of oil formation and expulsion. In: Durand B,Behar F,eds. Advances in Organic Geochemistry 1989. Organic Geochemistry, 1990, 16: 1-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700