用户名: 密码: 验证码:
小麦及其近缘种α-醇溶蛋白的鉴定与编码基因的分子克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醇溶蛋白作为小麦胚乳中重要的贮藏蛋白,其组成和含量对小麦面粉的烘烤品质具有重要影响。普通小麦(Triticum aestivum L.,2n=6x=42,AABBDD)中的优质品种是研究小麦醇溶蛋白与优良品质关系的重要材料。粗山羊草(Aegilops tauschii,2n=2x=14,DD)是小麦D基因组的供体,具有丰富的贮藏蛋白等位变异,是小麦品质改良的重要基因资源。本研究以普通小麦优质品种和粗山羊草为材料,利用反相高效液相色谱(RP-HPLC)和基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)对α-醇溶蛋白进行分离和鉴定,并利用PCR方法对其编码基因进行分子克隆,进而分析这些α-醇溶蛋白基因的分子结构特点及醇溶蛋白基因家族的同源性,同时对部分α-醇溶蛋白编码基因进行原核表达研究。主要研究结果如下:
     1.粗山羊草和普通小麦α-醇溶蛋白的分离与鉴定
     利用RP-HPLC对粗山羊草T15、T43、T26和普通小麦优质品种中优9507、藁城8901的α-醇溶蛋白组分进行初步的分离鉴定。通过MALDI-TOF-MS对鉴定结果进行进一步的验证,并获得各组分的精确分子量。结果发现,在粗山羊草中α-醇溶蛋白组分较少,T15中约为4个、T43中约为3个、T26中约为6个;而普通小麦中α-醇溶蛋白组分较为复杂,而且其分子量很接近,中优9507和藁城8901中α-醇溶蛋白组分都在20个左右,表明六倍体普通小麦α-醇溶蛋白的多态性较高。
     2.α-醇溶蛋白编码基因的分子克隆与序列比较分析
     利用一对特异的α-醇溶蛋白基因引物,以粗山羊草T15、T43、T26的基因组DNA和普通小麦中优9507、藁城8901的cDNA为模板分别进行AS-PCR扩增,均获得了约850bp左右的单一条带,分别回收并克隆到pGEM-T Easy载体上,DNA测序后得到19个α-醇溶蛋白基因,其中T15和T43各1个、T26 2个、中优9507 8个、藁城8901 7个。这些基因命名后已登陆GenBank,编号为EF561270-EF561288。
     基因序列分析表明,所得序列均为以ATG起始密码子开始、以TGA密码子结束的完整的α-醇溶蛋白编码基因,推导的氨基酸序列具有典型的α-醇溶蛋白的序列结构特征,由20个氨基酸的信号肽、N端重复区、多聚谷氨酰胺Ⅰ区、特征区Ⅰ、多聚谷氨酰胺Ⅱ区和特征区Ⅱ六部分组成,且部分基因推导出的分子量与质谱精确测定的分子量很接近,我们可以初步认为这些基因是质谱鉴定的蛋白的编码基因。氨基酸序列比对分析显示:这些基因与已知α-醇溶蛋白基因有很高的一致性,但也具有独有的特征。在Gli-At3和Gli-Z7的特征区Ⅱ前端发现了一个额外的半胱氨酸。半胱氨酸的增加有助于二硫键的形成,从而对面团特性产生影响。根据推导氨基酸序列所具有的四种T细胞抗原表位、多聚谷氨酰胺重复区的平均长度及同源性分析,我们对普通小麦中得到的基因进行了初步的染色体定位,将Gli-G2和Gli-Z3定位于6A染色体上;Gli-G1、Gli-G6、Gli-Z2、Gli-Z4和Gli-Z8定位于6B染色体上;Gli-G3、Gli-G4、Gli-G5、Gli-G7、Gli-Z1、Gli-Z5、Gli-Z7定位于6D染色体上。
     3.克隆基因的原核表达
     设计不扩增信号肽的表达引物,分别扩增T15、T43、T26、中优9507和藁城8901中的一个基因,扩增片断克隆到表达载体pGEX-4T-2上,转化到E.coli表达菌株BL-21(DE3)plysS。IPTG诱导后,收集菌液提取蛋白,进行SDS-PAGE分析,结果表明以上5个α-醇溶蛋白编码基因均在E.coli中获得了高效表达,表明我们克隆的这些基因在功能启动子的作用下具有表达活性。
     本研究克隆的α-醇溶蛋白新基因以及在E.coli中的成功表达,为进一步研究它们的结构与功能奠定了基础,并有可能成为小麦品质改良的候选基因资源。
The gliadins are the major components of wheat storage proteins. It is well known that the composition and content of the gliadins play important roles in determining bread-making quality. Previous investigations showed that the related species of hexaploid wheat, such as Aegilops tauschii (DD, 2n=2x=14) possessed extensive storage protein variations, which could provide potential elite gene resources for wheat quality improvement. In this study, some specific α-gliadins from Aegilops tauschii and Triticum aestivum L. were detected by reversed-phase high performance liquid chromatographic (RP-HPLC) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The specific PCR primers were used to amplify, clone and sequence their encoding genes, and homologous analysis of storage protein gene family was carried out. Some of these α-gliadin genes cloned were further characterized by expressing in Escherichia coli. The main results were as the followings:
    1. Separation and identification of α-gliadins in Aegilops tauschii and common wheat
    The components of α-gliadins in Aegilops tauschii accessions T15, T26, T43 and in common wheat cultivars Zhongyou 9507, Gaocheng 8901 were detected by RP-HPLC. Further characterization and the accurate molecular weights of these gliadins were determined by MALDI-TOF-MS. It was found that the components of α-gliadins in common wheat cultivars were much more complex than in Aegilops tauschii. There were about four α-gliadin fractions in T15, three in T43 and six in T26. But Zhongyou 9507 as well as Gaocheng 8901 contained about 20 different α-gliadins, suggesting that hexaploid wheat had higher polymorphism in gliadin compositions.
    2. Cloning, characterization and homologous analysis of α-gliadin genes
    Genomic DNA of Aegilops tauschii accessions T15, T43 and T26, and cDNA of common wheat cultivars Zhongyou 9507 and Gaocheng 8901 were used as templates, and a pair of AS-PCR primers for α-gliadin genes was used to amplify the coding regions of α-gliadin genes. Single strongly amplified band with about 850bp from all accessions were obtained, and then the amplified products were ligated into a pGEM-T Easy vector (Promega) and sequenced by primer walking. 19 complete code nucleotide sequences were obtained, including one in T15, one in T43, two in T26, eight in Zhongyou 9507, and seven in Gaocheng 8901. They were all named and deposited in GenBank with the accession number from EF561270 to EF561288.
    All of these sequences contained no introns and ends at a stop codon TGA. The deduced amino acid sequences had typical characters of α-gliadin, including six domains in structure: signal of 20 amino acid residues, N-terminal repetitive domain, polyglutamine domain I, unique domain I, polyglutamine domain II and unique domain II. Furthermore, some of the deduced molecular weights of mature proteins were similar to the accurate molecular weights determined by MALDI-TOF-MS, suggesting that these α-gliadin commonents identified were well correspond to their coding genes cloned. Amino acid sequence analysis showed that they demonstrated a high similarity with other α-gliadin genes previously cloned, but the unique features were present. Particularly, Gli-At3 and Gli-Z7 contained an extra cysteine residue in domain II, which might affect the pattern of disulfide bond formation, and therefore both genes might be important in determining bread-making quality. We also analyzed the cloned genes distribution on the chromosomes of hexaploid bread wheat, Gli-G2 and GH-Z3 assigned to chromosome 6A; Gli-G1,Gli-G6,Gli-Z2,GH-Z4 and GH-Z8 assigned to chromosome 6B; Gli-G3, Gli-G4, Gli-G5, Gli-G7, Gli-Z1, Gli-Z5 and GH-Z7 assigned to chromosome 6D.
    3. Expression of cloned genes in E. coli
    A pair of AS-PCR primers was designed without signal to amplify some of genes cloned. The amplified products were ligated into expression vector pGEX-4T-2 and then transformed into E. coli strain BL-21 (DE3) plysS. After induced by isopropyl-β-D-thiogalactoside (IPTG), cells were harvested, and then the expressed proteins were extracted and identified by SDS-PAGE. All 5 α-gliadin genes were expressed successfully in E. coli. This indicated that these genes can express under the control of the functional promoter.
引文
丁虹(1988)小麦醇溶蛋白的研究.遗传lO(6):39-41.
    刘华,王宇生,张辉,曹永生,周荣华,贾继增(1999)小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用.作物学报25(6):674-682.
    马守才,张改生,刘宏伟,王军卫(2000)多种小麦蛋白质酸性聚丙烯酰胺凝胶电泳方法研究.麦类作物学报20:55-58.
    邵锦震,刘杏川(2004)大麦醇溶蛋白酸性聚丙烯酰胺凝胶电泳条件的探索.湖北师范学院学报(自然科学版)24:22-26.
    孙新立,张来群,孙海虹,夏玉凤,冯晓燕,王友爱(1999)小麦醇溶蛋白酸性电泳条件的探索.作物学报25:126-129.
    魏育明,郑友良,刘登才,周永红,兰秀锦(2000)四川小麦地方品种Gli-1,Gli-2和Glu-1位点的遗传多样性.植物学报42(5):496-501.
    吴世荣,李志良,李根容,杨胜喜(2004)生物质谱的研究及其应用.重庆大学学报27:123-127.
    阎旭东,卢少源,李宗智(1995)普通小麦醇溶蛋白和高分子量谷蛋白亚基对品质的影响.华北农学报10(4):54-58.
    阎旭东,卢少源,李宗智(1994)适用于我国小麦醇溶蛋自分析的APACE方法.河北农业人学学报17(1):7-10
    晏月明,刘广田,Prodanovic S,Mominovic G S,Zoric D,Perovic D(1998a)小麦谷蛋白亚基的凝胶电泳分离及其品种鉴定.中国粮油学报13:1-5.
    晏月明,刘广田,Prodanovic s,Zoric D(1998b)小麦醇溶蛋白基因的HPCE和A-PAGE染色体定位及其比较分析.农业生物技术学报6:131-139.
    晏月明,刘广田(1998)毛细管区带电泳分离小麦种子醇溶蛋白的研究.色谱16:252-254.
    晏月明,刘广田(1999)小麦醇溶蛋白毛细管电泳分离技术及其在品种鉴定上的利用研究.作物学报25:237-243.
    晏月明,茹岩岩,余建中,刘广田(2000)中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析.农业生物技术学报8(1):24-27.
    杨何义,应万涛,钱小红(2002)蛋白质技术的研究进展.自然科学进展12:13-17.
    张国安,许雪娇,张素艳,樊惠芝(2003)蛋白质组的分离与分析及其应用进展.分析化学31:611-618.
    赵善楷,钟峰,张晓红(1996)基体辅助激光解吸质谱法(MALDI-MS)在生物化学上的应用.质谱学报17:1-5.
    赵文明(1995)种子蛋白质基因工程,陕西科学技术出版社.
    周青文(2000)麦胚乳贮藏蛋白组分遗传研究进展.麦类作物学报20(2):78-83.
    Albertini AM, Hofer M, Calos MP, Miller J H (1982): On the formation of spontaneous deletions: the important of short sequence homologies in the generation of large deletion. Cell 29: 319-328.
    Anderson OD, Hisa CC, Torres V (2001a): The wheat γ-gliadin genes: Characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor App Genet 103: 323-330.
    Anderson OD, Hsia CC, Adalsteins AE, Lew EJ-L, Kasarda DD (2001b): Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes. Theor Appl Genet 103:307-315.
    Anderson.OD, Litts JC and Greene FC (1997a): The α-gliadin gene family. I. Characteri zation of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor Appl Genet 95: 50-58.
    Anderson. OD, Litts JC and Greene FC (1997b): The α-gliadin gene family. Ⅱ. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95: 59-65.
    Arentz-Hansen H, McAdam SN, Molberg O, Kristiansen C, Sollid LM (2000): Production of a panel of recombinant gliadins for the characterization of T cell reactivity in celiac disease. Gut 46:46-51.
    Barrels D, Altosaar I, Harberd NP, Barker RF and Thompson RD (1986): Molecular analysis of γ-gliadin gene families at the complex Gli-1 locus of bread wheat (Triticum aestivum L). Theor Appl Genet 72: 845-53.
    Bean SR, Lookhart GL (2001a): Recent developments in high-performance capillary electrophoresis of cereal proteins. Electrophoresis 22: 1503-1509.
    Bean SR, Lookhart GL (2001b): High-performance capillary electrophoresis of meat, dairy, and cereal proteins. Electrophoresis 22: 4207-4215.
    Bietz JA (1994): Fractionation of wheat gluten proteins by capillary electrophoresis. Gluten Proteins 1993. Demold: Association of Cereal Research 404-413.
    Bietz JA, Schmalzried E (1992): Capillary electrophoresis of wheat proteins: optimization and use for varietal identification. Cereal Foods World 37: 555-560.
    Bietz JA, Huebner FR, Sanderson JE, Wall JS (1977): Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem 54:1070-1083.
    Branlard G, Dardevet M (1994): 1A null Gli-D1 allele wit h a positive effect on bread wheat quality. J Cereal Sci 20: 235-244.
    Branlard G and Dardevet M (1985): Diversity of grain proteins and bread wheat quality. I. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci 13: 329-343.
    Brown JWS, Flavell RB (1981): Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59: 349-359.
    Bushuk W, Zillman RR (1978): Wheat cultivar identification by gliadin electrophoregrams: 1. Apparatus, method, and nomenclature. Can J Plant Sci 58: 505-515.
    Capelli L, Forlani F, Perini F, Guerrieri N, Cerletti P, Righetti PG (1998): Wheat cultivar discrimination by capillary electrophoresis of gliadins in isoelectric buffers. Electrophoresis 19:311-318.
    Clarke BC, Phongkham T, Gianibelli MC, Beasley H, Bekes F (2003): The characterization and mapping of a family of LMW-gliadin genes: Effects on dough properties and bread volume. Theor Appl Genet 106: 629-635.
    Cornell. H. Jand G Wills-Johnson. (2001): Structure-activity relationships in coeliac-toxic gliadin peptides. Amino Acids 21: 243-253.
    Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, Pogna NE (1993): Genetics of gliadins coded by the group-1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor Appl Genet 86: 389-399.
    Draper SR (1987): ISTA Variety committee report of the working group for biochemical tests for cultivar identification 1983-1986. Seed Sci & Technol 15: 431-434.
    DuPont FM, Vensel W, Encarnacao T, Chan R, Kasarda DD (2004): Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theor Appl Genet 108: 1299-1308.
    Ennings C (1995): How trinucleotide repeats may function. Nature 378: 127.
    Galili G, Levy AA, Feldman M (1986): Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proc Natl Acad Sci USA 83: 6524-6528.
    Gianibelli MC, Lagudah ES, Wrigley CW, MacRichie F (2002a): Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet 104: 497-504.
    Gianibelli MC, Echaide M, Larroque OR, Carillo JM, Dubcovsky J (2002b): Biochemical and olecular characterisation of Glu-1 loci in Argentinian wheat cultivars. Euphytica 128: 61-73.
    Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004a): Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459-470.
    
    Gu YQ, Crossman C, Kong XY, Luo MC, You FM Coleman-Derr D, Dubcovsky J, Anderson OD (2004b): Genomic organization of the complex α-gliadin gene loci in wheat. Theor Appl Genet 109: 648-657.
    Hisa CC, Anderson OD (2001): Isolation and characterization of wheat ω-gliadin genes. Theor Appl Genet 103: 37-44.
    Jackson EA, Morel MH, Strohm TS, Branlard G, Metakovsky EV, Redaelli R(1996): Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). J Genet & Breed 50: 321-336.
    Jackson EA, Murray balance G, Thomsenk K (1986): Construction of a yeast vector directing the synthesis and release of barley (1-3, 1-4) -β-glucanase. Carsberg Research Communications 51: 445-58.
    Jackson EA, Holt LM, Payne PI (1983): Characterisation of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localisation of their controlling genes. Theor Appl Genet 66: 29-37.
    Kasarda DD, D'Ovidio R (1999): Deduced amino acid sequence of an alpha-gliadin gene form spelt wheat (spelta) includes sequences active in Celiac disease. Cereal Chem 76: 548-551.
    Kasarda DD, Autran JC, Lew EJL, Nimmo CC, Shewry PR (1983): N-terminal amino acid sequences of ω-gliadins and ω-secalins: Implications for the evolution of prolamin genes. Biochim Biophys Acta 747: 138-150.
    Kosmolak FG, Dexter JE, Matsuo RR, Leisle D, Marchylo BA (1980): A relationship between durum wheat quality and gliadin electrophoregrams. Can J Plant Sci 60: 427-432.
    Lafiandra D, D'Ovidio R, Porceddu E, Margiotta B, Colaprico G (1993): New data supporting high Mr glutenin subunit 5 as the determinant of quality differences among the pairs 5+10 vs. 2+12. J Cereal Sci, 18: 197-205.
    Lookhart G, Bean S, Ultrafast CE (2000): analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. J Agric Food Chem 48: 344-353.
    Lookhart GL, Bean SR (1996): Improvements in cereal protein separations by capillary electrophoresis: resolution and reproducibility. Cereal Chem 73: 81-87.
    Lookhart GL, Bean SR (1995): Separation and characterization of wheat protein fractions by high-performance capillary electrophoresis. Cereal Chem 72: 527-532.
    Masci S, Rovelli L, Kasarda DD, Vensel WH (2002): Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor Appl Genet 104: 422-428.
    Mazzeo MF, De Giulio B, Senger S, Rossi M, Malorni A, Siciliano RA (2003): Identifiation of transglutaminase-mediated deamidation sites in a recombinant α-gliadin by advanced mass-spectrometric methodologies. Protein Sci 12: 2434-2442.
    McDonald MBJ (1991): Blotting of seed proteins from isoelectrically focused gels for cultivar identification. Seed Sci Technol 9: 33-40.
    
    
    Mecham DK, Kasarda DD, Qualset CO (1978): Genetic aspects of wheat gliadin proteins. Biochem Genet 16: 831-853.
    Metakovsky EV, Gomez M, Vazquez JF, Carrillo JM (2000): High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breeding 119: 37-42.
    Metakovsky EV, Branlard G (1998): Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet 96: 209-218.
    Metakovsky EV, Branlard G, Chernakov VM, Upelniek VP, Redaelli R, Pogna NE (1997a): Recombination mapping of some chromosome 1A-, 1B-, 1D-, and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor Appl Genet 94: 788-795.
    Metakovsky EV, Annicchiarico P, Boggini G (1997b): Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J Cereal Sci 25: 225-236.
    Metakovsky EV, Pogna NE, Biancardi AM, Redaelli R (1994): Gliadin allele composition of common wheat cultivars grown in Italy. J Genet & Breed 48: 55-66.
    Metakovsky EV, Ng PKW, Chernakov VM, Bushuk W (1993): Gliadin alleles in Canadian western red spring wheat cultivars: use of two different procedures of acid polyacrylamide gel electrophoresis for gliadin separation. Genome 36: 743-749.
    Moore GP (1983): Slipped-mispairing and the evolution of introns. Trends Biochem Sci 8: 411-414.
    Neill JD, Litts JC, Anderson OD (1987): Greene FC, Stiles JI.Expression of a wheat alpha-gliadin gene in Saccharomyces cerevisiae. Gene 55: 303-317.
    Ng PKW, Bushuk W (1998): Statistical relationships between high molecular weight subunits of glutenin and breading quality of Canadin - grown wheats. Cereal Chem 65: 408-413.
    O'Farrell PH (1975): High resolution two-dimensional electrophoresis of proteins. J Bio Chem 250: 4007-4021.
    
    Osborne, TB (1924): The Vegetable Proteins (London, Longmans, Green).
    
    Payne PI, Seekings JA, Kaur H (1990): Contribution of allelic variation of glutenin subunits and gliadins to bread-making quality, In "Gluten Proteins", (W. Bushuk and R. Tkachuck, eds), American Association of cereal chemists St Paul MN 504-511.
    Payne PI Ann (1987): Genetics of wheat storage protenins and the effect of allelic variation on bread mapping quality. Rev Plant Physiol 38:141-153.
    Payne PI, Jackson EA, Holt LM (1984): The association between γ-gliadin 45 and gluten strength in durum wheat varieties. A direct causal effect on the result of genetic linkage. J Cereal Sci 2: 73-81.
    Payne PI, Holt Lm, Lawrence GJ, Law CN (1982): The genetics of gliadin and glutenin, the major storage proteins of wheat endosperm. Qual Plant Plant Foods Hum Nutr 31: 229-241.
    Pfluger LA, D'Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D (2001): Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet 103: 1293-1301.
    Ppogna NE (1993): Recombination mapping of Gli-1 a new gliadin-coding locus on comosomes 1A and 1B in common wheat. Theor Appl Genet 87: 113-121.
    Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990): Chromosome IB-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci 11: 15-34.
    Qi PF, Wei YM, Yue YW, Yan ZH and Zheng YL (2006): Biochemical and molecular characterization of gliadins. Mol Biol 40: 713-723.
    Redelli R (1994): Two-dimensional mapping of gliadins using biotypes and nullmutants of common wheat Cultivar Saratovskaya 29. Hereditas 121: 131-137.
    Rothtein SJ, Lazarus CM, Smith WE, Baulcombe DC (1984): Secretion of wheat α-amylase expressed in Yeast. Nature, London. 308: 662-665.
    Salcedo G, Prada J, Sanchez-Monge R, Aragoncillo C (1980): Aneuploid analysis of low molecular weight gliadins from wheat. Theor Appl Genet 56: 65-69.
    Sambrook J, Fritisch EF, Maniatis T (1989): Molecular cloning: A laboratory Manual. 2nd ed. Cold spring harbor, N Y: Cold Spring Harbor Laboratory Press.
    Sapirstein HD, Fu BX (1998): Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem 75: 500-507.
    
    Senger S, Maurano F, Mazzeo MF, Gaita M, Fierro O, David CS (2005): Troncone R, Auricchio S, Siciliano RA, and Rossi M. Identification of Immunodominant Epitopes of alpha-Gliadin in HLA-DQ8 Transgenic Mice following Oral Immunization. J Immunol 175:8087-8095.
    Senger S, Luongo D, Maurano F, Mazzeo MF, Siciliano RA, Gianfrani C, David C, Troncone R, Auricchio S, Rossi M (2003): Intranasal administration of a recombinant α-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunology Letters 88: 127-134.
    Shewry PR, Halford NG, Belton PS and Tatham AS (2002): The structure and properties of glutenin elastic protein from wheat grain. Phil Trans R Soc Lond B 357: 133-142.
    Shewry PR, Tatham AS (1990): The prolamin storage proteins of cereal seeds: structure and evolution. J Bio Chem 267: 1-12.
    Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986): The classification and nomenclature of wheat gluten proteins: A reassessment. J Cereal Sci 4: 97-106.
    Singh H, and MacRitchie F (2001): Application of polymer science to properties of gluten. J Cereal Sci 33: 231-243.
    Singh NK, Shepherd KW (1988): Linkage mapping of the genes controlling endosperm proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet 66:628-641.
    Sissons MJ, Bekes F, Skerritt JH (1998): Isolation and functionality testing of low molecular weight glutenin subunits. Cereal Chem 75: 30-36.
    Sozinov AA, Kopus MM (1983): Mutation of the gliadin coding locus of chromosome 1D. Tsiologiya-I-Genetika 17: 19-24.
    Sozinov AA, Poperelya FA (1980): Genetic classification for prolamines and its use for plant breeding. Ann Technol Agric 29: 229-245.
    Tatham AS, Shewry PR (1995): The S-poor prolamins of wheat, barley, and rye. J Cereal Sci 22: 1-16.
    Tautz D, Trick D, Dover GA (1986): Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652-656.
    Thomas W, Okita S, Cheesbrough V, Reeves CD (1985): Evolution and Heterogeneity of the α-/β-type and γ-type Gliadin DNA Sequences. J Biol Chem 260: 8203-8213.
    Vaccino P, Metakovsky EV (1995): RFLP patterns of gliadin alleles in Triticum aestivum L.: implications for analysis of the organization and evolution of complex loci. Theor Appl Gene 90: 173-181.
    Van Herpen T WJM, Goryunova SV, Johanna van der Schoot, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJM, Vosman B, Bosch D, Hamer RJ, Gilissen LJWJ, Smulders MJM (2006): Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1.
    Vensel WH, Tarr GE, Kasarda DD (1995): C-Terminal and Internal sequence of a low molecular weight (LMW-s) type of glutenin subunit. Cereal Chem 72: 356-359.
    Wahls WP, Wallace LJ, Moore PD (1990): Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60: 95-103.
    Werner WE, Wiktorowicz JE, Kasarda DD (1994): Wheat varietal identification by capillary electrophoresis of gliadins and high molecular weight glutenin subunits. Cereal Chem 71: 394-402.
    
    Wieser H (2001): Comparative investigations of gluten proteins from different wheat species. III. N-terminal amino acid sequences.of α-gliadins potentially toxic for coeliac patients. Eur Food Res Technol 213: 183-186.
    Wieser H, Zimmermann G (2000a): Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur Food Res Technol 210: 324-330.
    Wieser H, Zimmermann G (2000b): Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur Food Res Technol 211: 262-268.
    
    Wieser H, Antes S, Seilmeier W (1998): Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chem 75: 644-650.
    William MDHM, Pena RJ, Mujeeb-Kazi A (1993): seed protein and isozyme variation in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet 87: 257-263.
    Wrigley CW, Robinson PJ, Williams WT (1982): Association between individual gliadin proteins ans quality, agronomic and morphological attributca of wheat cultivars. Aust J Agric Res 33: 409-418.
    Yan Y, Zheng J, Xiao Y, Yu Y, Hu Y, Cai M, Hsam SLK and Zeller FJ (2004): Identification and molecular analysis of a y-type HMW glutenin subunit gene from Glu-1D' locus of Aegilops tauschii. Theor Appl Genet 1008: 1349-1358.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003a): Genetic polymorphisms at Gli-D' gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed 122: 120-124.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003b): Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis Euphytica 130: 377-385.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Ohtsuka I, Zeller FJ (2003c): HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet 107: 1321-1330.
    Yan Y, Jiang Y, Yu J, Cai M, Hu Y, Perovic D (2003d): Characterization of seed hordeins and varietal identification in three barley species by high-performance capillary electrophoresis. Cereal Res Communi 31: 323-330.
    Yan Y, Yu J, Jiang Y, Hu Y, Cai M, Hsam SLK, Zeller FJ (2003e): Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis 24: 1429-1436.
    Yan Y, Prodanovic S, Mladenov N, Milovanovic M (1999a): Genetic control of low molecular weight glutenin subunits in wheat by A-PAGE analysis. Cereal Res Communi 27: 251-257.
    Yan Y, Surlan-Momirovic G, Prodanovic S, Zoric D, and Liu G (1999b): Capillary zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica 105: 197-204.
    Gu RQ, Crossman C, Kong X, Luo M, You FM, Coleman-Der D, Dubcovsky J, Anderson OD (2004): Genomic organization of the complex α-gliadins gene loci in wheat. Theor Appl Genet 109:95:50-58.
    Zhang W, Gianibelli MC, Rampling W, Mu L ,Gale KR (2003): Identification of SNPs and development of allele-specific PCR markers for y-gliadin alleles in Triticum aestivum. Theor Appl Genet 107: 130-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700