用户名: 密码: 验证码:
聚合物基MEMS技术在生物医学上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MEMS技术是近年来随着硅微加工技术发展起来的一种微加工技术,通过光刻等技术,可以在微米甚至纳米尺度上制备元器件。近几年来,在MEMS领域中出现了柔性MEMS和Bio-MEMS技术。柔性MEMS技术在柔性基底上加工出微米尺度的器件,这样制备的器件具有能经受冲击、能够折叠弯曲等优点;而Bio-MEMS技术利用MEMS技术制造体外分析诊断器件和体内植入器件。
     随着有机聚合物化学的发展,近年来人们开发出各种聚合物材料,这些聚合物材料具有各种优良的加工性能和生物相容性,在生物医学领域得到了广泛的应用。本论文主要研究在高分子聚合物聚酰亚胺柔性基底上制备生物电极阵列和环氧SU-8胶在乳腺癌细胞培养方面的应用。
     视网膜视觉修复是通过对盲人视网膜植入微电极阵列,利用电信号刺激视网膜神经,从而使盲人产生光幻视,修复盲人的视觉的治疗方法。在视网膜视觉修复中,生物电极阵列作为人造器件与生物神经交互作用的桥梁,其性能对生物电刺激的传输起着举足轻重的作用。由于视网膜分辨率为微米尺度,所以可以用MEMS技术来制备生物电极阵列。目前已有制备成功的二维平面生物电极阵列。
     随着人们对细胞培养研究的深入,人们发现三维微米或纳米微结构中培养的细胞能够显示出与二维平面上培养的细胞不同的性能。由于MEMS能够制备尺寸很小的器件,在体内植入器件制备方面具有得天独厚的优势
     本论文研究的一个内容是视网膜视觉修复三维生物电极阵列的研制。应用MEMS工艺,采用MEMS工艺中通用的溅射、RIE刻蚀、光刻、电铸等方法,结合聚酰亚胺的特性,我们成功的在柔性聚酰亚胺基底上制备成功了一种三维生物电极阵列。我们主要解决了聚酰亚胺与引线间结合力问题、电极生物相容性保护问题和电极的露出问题,以及柔性基底与刚性基片的分离问题。与二维平面电极不同,我们制备的三维电极阵列电极部分能够凸出基底表面,与体液良好接触。由于采用聚酰亚胺柔性基底,我们制备的生物电极阵列具有较好的柔性。阻抗测试结果表明,在频率为20 Hz到10 kHz之间时,在生理盐水中单个电极阻抗为22 kΩ到8 kΩ。我们制备的生物电极阵列具有较小的阻抗,能够减少电刺激信号在电极阵列上的损耗。适合作为研究视网膜神经信号的工具。
     本论文研究的另一个内容是我们通过采用MEMS制造技术,利用SU-8光刻胶在微米尺度制造了带有不同深宽比的沟槽、五角星、齿轮,与乳腺癌细胞株MCF-7细胞共同培养,采用形态学观察、MTT分析以及流式细胞仪检测这些微结构对乳腺癌细胞生长的影响,以探讨这些微结构在肿瘤治疗方面的潜在应用前景。
MEMS technology is a kind of micro manufacture technology which developed along with silicon micro manufacture technology. By process such as photolithograph, we can manufacture device of micro or nano dimension. Flexible MEMS and Bio-MEMS have appeared in MEMS domain recent several years. Device of micrometer dimension on flexible substrate can be manufactured by flexible MEMS technology, and these devices have the virtue that they can bear impact and can be curved; in vitro diagnostic device and in vivo device can be manufactured by Bio-MEMS technology.
     With developing of organic compound technology, recent year people developed kinds of polymer material, which has good fabrication character and good biocompatibility. These organic compounds are used widely in medical domain. This thesis mainly focuses on fabricating bioelectrode array on organic compound PI substrate and application of epoxy based SU-8 in breast cancer MCF-7 cell culture.
     Retinal Prosthesis is a therapy method that through implant micro electrode array on retina of blind people, using electric signal stimulate retina, and cause the blind to see vision. In Retinal Prosthesis, bioelectrode array, as the bridge between artificial instrument and nature neuron, is most important to transmittance of electric signal. We manufacture bioelectrode array using MEMS technology, for the resolution on retina is of micro dimension. Now some two dimensional bioelectrode arrays have been developed.
     With further research to cell culture, people find that cell cultured in three dimensional structure of micro or nano dimension differs from ones that cultured in two dimensional structures. Bio - MEMS has the nature advantages in in vivo device manufacture for its small dimension.
     First subject of this thesis is that we developed a kind of 3-D bioelectrode array used in retinal prosthesis. Using common MEMS technology such as sputtering, RIE, photolithography, electroforming, etc, combine with character of PI(Polyimide), we manufactured a kind of 3-D bioelectrode array on flexible substrate successfully. We solved the problems in process technology, which include adhesion force between PI and wire, electrode biocompatibility protection, emerge of electrode, and peeling apart of flexible substrate. Differ from two dimensional bioelectrode array, 3-D bioelectrode array electrodes protrude from substrate surface and can contact with tissue more fully. Our bioelectrode array is flexible because we use polyimide as the substrate. Impedance test result indicates that the impedance of single electrode is from 22 kΩto 8 kΩwhen frequencies vary from 20 Hz to 10 kHz. The impedance of our bioelectrode is small, as a result, it consume less energy on bioelectrode array when electric signal pass through it. It is suitable to use three dimensional bioelectrode arrays as a tool of researching retinal neural signals.
     The other subject of this thesis is that we manufactured SU-8 grooves, pentacle and gear structures of micro dimension with different deep wide ratio using MEMS technology. We cultured breast cancer MCF-7 cells in micro structures. Configuration observation, MTT check and flow cytometry were used to check effect of microstructures on breast cancer MCF-7 cells to research potential application in tumor therapy of micro structures.
引文
[1] Mark S. Humayun. Intraocular Retinal Prosthesis[J]. Tr. Am. Ophth. Soc, 2001, 99:271-300
    [2] Grumet A. E. Electric Stimulation Parameters for an Epi-Retinal Prosthesis[D]. Massachusetts: Massachusetts Institute of Technology, 1999,9
    [3] James, Weiland D., Liu W. T., Mark S., Humayun. Retinal Prosthesis[J]. Annu. Rev. Biomed. Eng. 2005, 7:361–401
    [4] 刘英奇,赵 亮。现代眼科学[M]。北京:北京科学技术出版社。2001年8月1日第一版第二次印刷 :26-27
    [5] 姚泰。 生理学[M]。北京:人民卫生出版社。2001年11月第5版第41次印刷:265-271
    [6] 裴为华,陈弘达,唐君,等。 用于视觉修复的视网膜下植入微芯片[J]。 高技术通讯。2005,15(8):39-43
    [7] MacLaren, R. E. Pearson, R. A. MacNeil, A et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006, 444 (7116): 203-207
    [8] Amedi A., Camprodon J., Bermpohl F., et al. Visual-to-auditory sensory substitution in proficient blind users: Neural correlates and potential application in neuroprostheses research[R]。CNS 2005 the 12th Annual Meeting of the Cognitive Neuroscience Society。2005年4月
    [9] Paul B. R., Kurt A. Kaczmarek, Mitchell E. Tyler, et al。Form perception with a 49-point electrotactile stimulus array on the tongue[J]. Rehabilitation Research and Development. 1998, 35(4): 427-430
    [10] Potts A. M., Inoue J., Buffum D. The electrically evoked response of the visual system (EER)[J]. Investigative Ophthalmology. 1968, 7(3): 269-278
    [11] Albert M., Potts , Jiro I.. The electrically evoked response (EER) of the visual system II. Effect of adaptation and retinitis pigmentosa[J]. Investigative Ophthalmology 1969, 8(6): 605-612
    [12] Albert M. Potts and Jiro Inoue. The electrically evoked response of the visualsystem (EER) III[J]. Further contribution to the origin of the EER Investigative Ophthalmology. 1970, 9(10): 814-819
    [13] Wang X, Peng C L, Zhao Z Q. Research Progress of Subretinal Implant based on Electronic Stimulation[C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 1289-1292
    [14] H.K. Trieu, L. Ewe, W. Mokwa, et al. Flexible Silicon Structures for a Retina Implant[R]. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Heidelberg, Ger. IEEE, Piscataway, NJ, USA, 1998: 515-519
    [15] Peter Walter, Zolta′n F., Kisva′rday, et al. Cortical Activation Via an Implanted Wireless Retinal Prosthesis[J]. Invest Ophthalmol Vis Sci, 2005, 46(5): 1780-1785
    [16] Shyu J. S., Maia M., Weiland J. D.,et al. Electrical Stimulation in Isolated Rabbit Retina[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(3): 290-298
    [17] Sekirnjak C., Hottowy P., Sher A., et al. Electrical Stimulation of Mammalian Retinal Ganglion Cells With Multielectrode Arrays[J]. J Neurophysiol , 2006, 95(6): 3311-3327
    [18] Warren D. J., Normann R. A.. Functional reorganization of primary visual cortex induced by electrical stimulation in the cat[J]. Vision Research, 2005, 45 (5): 551–565
    [19] Güven D. , Weiland J. D., Maghribi M. . Implantation of an inactive epiretinal poly(dimethyl siloxane) electrode array in dogs[J]。Experimental Eye Research, 2006, 82 (1): 81–90
    [20] Mokwa W. MEMS technologies for epiretinal stimulation of the retina[J]. J. Micromech. Microeng. 2004, 14(9): S12–S16
    [21] Ralph J Jensen, Ofer R Ziv, and Joseph F Rizzo. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode[J]. J. Neural Eng. 2005, 2(1): S16–S21
    [22] Matthew A. Schiefer and Warren M. Grill,. Sites of Neuronal Excitation by Epiretinal Electrical Stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(1): 5-13
    [23] Rizzo III J. F., Wyatt J., Loewenstein J., et al。 Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human Retina with MicroelectrodeArrays[J]。Invest Ophthalmol Vis Sci, 2003, 44(12): 5355-5361
    [24] Mark S. Humayun a, Weiland J. D. et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis[J]. Vision Research 2003, 43 (24): 2573–2581
    [25] M.S. Humayun, R. Freda, I. Fine, et al. Implanted Intraocular Retinal Prosthesis in Six Blind Subjects. ARVO 2005, Retinal Prosthesis I, Monday, May 2. http://www.biologynews.net/archives/2005/05/02/six_previously_blind_patients_detect_light_motion_identify_objects_with_retinal_prostheses.html
    [26] Weiland JD, Greenberg RJ, Humayun MS, et al. Clinical Trial of a Prototype Retinal Prosthesis[R]. 10th Annual Conference of the International FES Society, 2005 July– Montreal, Canada
    [27] Palanker D. V., Huie P., Vankov A., et al. Attracting retinal cells to electrodes for high-resolution stimulation[J]. Progress in Biomedical Optics and Imaging, Ophthalmic Technologies XIV, 2004, 5(3): 306-314
    [28] 戴亚春, 周建忠, 王匀,等。MEMS的微细加工技术[J]。机床与液压,2006,5:15-19
    [29] Amy C. R. G., Rebecca S. S., Audrey M. J., et al. A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices[R]. Proceedings of the IEEE, 2004, 92(1): 6-21
    [30] 于靖军,宗光华,毕树生。全柔性机构与MEMS[J]。光学精密工程. 2001,9(1):1-5
    [31] 王振海,张卫红。柔性结构拓扑优化设计发展概况[J]. 机械设计. 2004, 21(3): 1-4
    [32] Sridhar Kota, Jinyong Joo, Zhe Li, et al. Design of Compliant Mechanisms: Applications to MEMS[J]. Analog Integrated Circuits and Signal Processing, 2001, 29(1-2): 7–15
    [33] 马斌,徐永清,甘志银,等。用于药物释放系统的柔性微针研制[J]. 半导体技术。2005,30(12):19-22
    [34] Sridhar Kota, Joel Hetrick, Zhe Li, et al. Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications[J]。 IEEE/ASMEtransactions on mechatronics。1999,4(4): 396-408
    [35] Thomas Stieglitz, Hansjoèrg Beutel, Martin Schuettler, et al. Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces. Biomed Microdev 2(4): 283-294
    [36] Thomas Stieglitz, Matthias Gross. Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems[J]. Sensors and Actuators B, 83 (1):8-14
    [37] Xiao YH, David C. Martin, Cui XY, et al. Surface Modification of Neural Probes With Conducting Polymer Poly(hydroxymethylated-3,4-ethylenedioxythiophene) and Its Biocompatibility[J]。 Applied Biochemistry and Biotechnology, 2006,128(2):117-129
    [38] Scribner, Dean, Humayun, Justus, et al. Towards a retinal prosthesis for the blind: advanced microelectronics combined with a nanochannel glass electrode array[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2002, 4608: 239-244
    [39] EN 45502–1:1998. Active implantable medical devices. General requirements for safety, marking and information to be provided by the manufacturer[S].
    [40] 俞耀庭,张兴栋。生物医用材料[M]。天津:天津大学出版社 2000年12月第1版:224-225
    [41] 蔡建新,张唯真. 生物医学电子学[M]. 北京:北京大学出版社 1997 年 12 月1 日出版: 271-272
    [42] 孙自淑,江天,马家举,等。聚酰亚胺的改性及应用进展[J]. 化工科技,2005,13(5):54 -58
    [43] J. M. Seo, S. J. Kim, H. Chung, et al. Biocompatibility of polyimide Microelectrode array for retinal stimulation[J]. Mater. Sci. Eng. C, 2004 24(2): 185–189
    [44] Lian, Syh-Ming, Chen Ker-Ming; Lee Rong-Jer. Chemical etching of polyimide film[J]。Journal of Applied Polymer Science, 1995,58(9): 1577-1584
    [45] 钱建国,章吉良,张明生,等。聚酰亚胺在氧基工作气体中的反应离子深度刻蚀研究[J]。 微细加工技术。2000,3:29-34
    [46] FuSao Shimokawa, Akinori Furuya, Shinsuke Matsui. Fast and Extremely Selective Polyimide Etching With a Magnetically Controlled Reactive Ion Etching System[C]. Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Nara, Japan, February 1992): 192–197
    [47] 刘慧婷,李志强,周慧英,等。皮下植入金丝对兔耳皮肤的影响[J]。实验动物与比较医学。2005,25(4):233-235
    [48] 梁丹,陈家祺,李永平,等。9999K 纯金的生物相容性及其与角膜生物愈合特性的研究。中国生物医学工程学报[J]。2001,20(4):330-334
    [49] A. S. Morss, P. Seifert, A. Groothius, et al. Biocompatibility Comparison of Stainless Steel, Gold-Coated, and Heat-Treated Gold-Coated Endovascular Stents[J]. Mat. Res. Soc. Symp. Proc. 2002, 711: 5-10
    [50] 闫石。液晶光控取向膜材料的研究[D]。中国科学院长春光学精密机械与物理研究所, 2001 年
    [51] 肖素艳,车录锋,李昕欣,等。基于聚酰亚胺柔性衬底微温度传感器阵列的关键技术研究[J]. 中国机械工程. 2005, 16 卷增刊: 184-187
    [52] Chunyan Li, Frank E Sauser, Richard G Azizkhan, et al. Polymer flip-chip bonding of pressure sensors on a flexible Kapton film for neonatal catheters[J]. J. Micromech. Microeng. 2005, 15(9): 1729–1735
    [53] Choi S. C. and Koh S. K. Adhesion Improvement between Metal Thin Films (Cu and Pt) and High Surface Free Energy Polyimide by Ion Assisted Reaction[J]. Proceedings of the International Conference on Ion Implantation Technology, 1999, 2: 1078-1081
    [54] Nakamura Y., Suzuki Y., Watanabc Y,. Effect of oxygen plasma etching on adhesion between polyimide films and metal[J]. Thin Solid Films, 1996. 290-291: 367-369
    [55] Kim S. H. , Na S. W. , Lee N.-E. et al. Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma[J]. Surface & Coatings Technology , 2005, 200 (7) 2072 – 2079
    [56] Sami Franssila 著。陈迪,刘景全,朱军,等译。微加工导论[M]。北京:电子工业出版社。 2006 年 1 月第 1 次印刷:127
    [57] Andrew Eli Grumet。Extracellular Electrical Stimulation of Retinal Ganglion Cells[D]. Massachusetts: Massachusetts Institute Of Technology , 1994, 9
    [58] Alison A. Biology’s new dimension[J]. Nature 2003, 424(6951): 870-872
    [59] 崔大祥. 纳米材料在肿瘤生物治疗中的潜在应用[J]. 中国肿瘤生物治疗杂志. 2006, 13(2): 79-82
    [60] Nicolini C, Lanzi M, Accossato P, et al. A silicon-based biosensor for real-time toxicity testing in normal versus cancer liver cells[J]. Biosensors & Bioelectronics. 1995, 8(10): 723-733
    [61] Stevens MM, George JH. Exploring and engineering the cell surface interface [J]. Science 2005, 310(5751): 1135-1138
    [62] Tjia JS, Moghe PV. Regulation of cell motility on polymer substrates via “dynamic,” cell internalizable, ligand microinterfaces[J]. Tissue Engineering. 2002, 8(2): 247-261
    [63] 伊福廷,吴坚武、冼鼎昌。微细加工新技术—LIGA技术[J]。微细加工技术。1993,4:1-6
    [64] LIGA Technology. 2004.1. http://www.ca.sandia.gov/liga/tech.html。
    [65] 陈迪,雷蔚,李昌敏,等。DEM 技术中微复制工艺研究[J]。 微细加工技术。2001,1:61-65
    [66] C. K. Chung. LIGA and LIGA-like Technology. http://140.116.31.109/rj/excimer/index/2/91excimercourse/CKChung/LIGA_like.PDF
    [67] 唐敏。SU-8光刻工艺和DEM技术中塑料深层刻蚀工艺研究[D]. 上海交通大学。2001,1.
    [68] M. Despont, H. Lorenz, N. Fahrni, et al. High-aspect-ratio, ultrathick, negative-tone near-uv photoresist for MEMS applications[J]. Sensors and Actuators A,1998,64(1):33—39
    [69] Gabriela Voskerician, Matthew S, Shive, et al. Biocompatiblity and biofouling of MEMS drug delivery devices[J]. Biomaterials. 2003, 24(11): 1959-1967
    [70] Milgrew MJ, Hammond PA, Cumming DRS, et al. The development of scalable sensor arrays using standard CMOS technology[J]. Sensors and Actuators B. 2004, 103 (1): 37–42
    [71] Oh S, Daraio C, Chen LH, et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes[J]. J, Biomed, Mat, Res, Part A. 2006,78(1): 97-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700