用户名: 密码: 验证码:
某尾矿坝污染物迁移的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿污染物迁移是尾矿库一个重要环境因素。超标排放,会对库区地下水和周围地表水造成污染。定量分析尾矿库内矿浆污染物迁移规律,预测不同工况下的污染物迁移过程,对进行污染物防治的规划、设计、施工、尾矿坝正常运行、保护矿区环境具有重要意义。本文以某尾矿坝为研究对象,采用数值模拟的方法研究结合现场监测资料,定量分析矿浆中铜离子迁移规律,进行了以下工作。
     1、归纳、分析了溶质迁移研究的历史和现状,提出某尾矿坝面临的问题是虽有部分监测资料,但对矿浆中污染物的迁移规律缺乏定量分析研究,对定量评价矿区地下水和地表水受到的污染造成困难。
     2、在分析了一般尾矿坝和库内矿浆沉积物特征的基础上,重点介绍和分析某尾矿坝的工程地质和矿浆特点。根据工程地质勘查结果,建立了二维渗流模型。
     3、应用GEO-SLOPE软件的SEEP/W模块进行了尾矿坝渗流的数值模拟,分析了干滩长度、尾矿砂各层渗透系数比等对渗流场的影响。在此基础上建立起尾矿坝污染物迁移的数值模型,将SEEP/W模块计算得到的渗流场结果引入污染物迁移计算模型中,应用CTRAN/W模块模拟了考虑和不考虑吸附两种情况下100天、10000天坝体内铜离子的迁移过程。
     4、本文的结论是:(1)定量分析矿浆中污染物迁移规律有助于定量评价尾矿坝环境因素,能够作为制定矿浆污染物防治方案的重要依据;(2)渗流模拟结果与监测结果比较,表明建立的渗流模型是合理的,保证了随后污染物的迁移模拟基础;(3)100天和10000天铜离子的模拟浓度场说明尾矿库对污染物的吸附起关键作用,多数污染物仍未流出库外。
     本文工作的虽然是初步的,但将溶质迁移理论用于对尾矿坝污染物定量模拟具有一定的创新。
Contaminant transport of tailings is an important factor of tailing pool.Overstandard will pollute surrounding groundwater and surface water. Studying of Quantitative analysis of contaminant transport of slurry, predicating the transport process under different engineering conditions have important meanings for protecting of the environment and functioning of the tailing dam.In this text, using a certain tailing dam as research object, applying numerical simulation with data of site monitoring, do quantitative analysis of contaminant transport of copper.
    1 Sum up and analyze the history and actuality of contaminant transport study, bring the question facing the certain tailing dam.Though having monitoring data, absence of quantitative analysis can bring difficulty to apprasing the pollution of groundwater and surface water.
    2 Basing on the characters of common tailing dam and slurry, mainly introduce the geological character, and set up the 2-D seep model.
    3 Applying Geo-slope SEEP/W simulating the seep of the tailing dam, analyze the effect of length of the dry beach and ratio of permeability coefficient.Then set up the contaminant transport model, take the seep results into it.Apply CTRAN/W simulating the transport of copper in 100 day and 10000 day with considering and not considering the absorption factor.
    4 Conclusions can obtain: (1) Quantitative analysis of contaminant transport help to apprasing the environment factors, and can be as the witness of establishing the prevent scheme of the slurry; (2) Comparing the results of simulating and monitoring, indicate the model is reasonable and can be the base of contaminant transport simulation; (3 ) The simulation concentration results
    of copper in 100d and 10000d indicate that the absorption of taiing pool is the key factor to contaminant, majority of contaminant accumulate in it.
    Though study of this text is preparatory, applying contaminant transport theory to simulate the taiing dam is innovation.
引文
【1】 王仙琴.尾矿库环境因素与防治措施[J].中国钼业,2002,24(1):42-45.
    【2】 Babaeyan-Koopaei K, Valentine E M, Ervine D A. Case study on hydraulic performance of brent reservoir spiliway[J]. Journal of Hydraulic Engineering, 2002, 128(6): 562-567.
    【3】 Mc Dermott R K, Sibley J M. The Aznalcollar tailings dam accident-a case study[J]. Mineral Resources Engineering, 2000, 9(1): 101-118.
    【4】 Kemper T, Sommer S. Estimate of heavy metal contamination in Soils after a mining accident using reflect ance spectroscopy[J]. Environmental Science and Technology, 2002, 36(12): 2742-2747.
    【5】 Blight G E. Destructive mudflows as a consequence of tailings Dyke failures[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1997, 125(1): 9-18.
    【6】 Chandler R J, Tosatti G. Stava tailings dams failure, Italy, July 1985[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1995, 113(2): 67-79.
    【7】 Fourie A B, Blight G E, Papageorgiou G. Static liquefaction as a possible explanation for the Merriespruit railings dam Failure[J]. Canadian Geotechnical Journal, 2001, 38(4): 707-719.
    【8】 Vick S G. Tailings dam failure at Omaiin Guyana[J]. Mining Engineering, 1996, 48(11): 34-37.
    【9】 HarderL F J, Stewart J P. Failure of Tapo Canyon railings dam[J]. Joumal of Performance of Constructed Facilities, 1996, 10(3): 109-114.
    【10】 Marcus W A, Meyer G A, Nimmo D R. Geomorphic control of Persisten tmine impacts in a Yellow stone Park stream and implications for the recovery of fluvial systems[J]. Geology, 2001, 29(4): 355-358.
    【11】 李政,张振柱.洛南县黄龙钼业小区尾矿库安全管理探析-由镇安黄金尾矿库发生溃坝引发的思考.中国防汛抗旱,2006,17(4),57-58.
    【12】 Marisol M, Carlos A, Cristina D, et al. The impact of the Aznalc llarmine tailing spill on groundwater[J]. The Science of the Total Environment, 1999, 242(3): 189-209.
    【13】 Wayne D M, Warwick J J, Lechler P J, et al. Mercury contamination in the Carson River, Nevada: A preliminary study of the impact of mining wastes[J]. Water, Air and Soil Pollution, 1996, 92(3-4): 391-408.
    【14】 Hudson-Edwards K A, Macklin M G, Miller J R, et al. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia[J]. Joumal of Geochemical Exploration, 2001, 72(3): 229-250.
    【15】 Di G F, Massoli-Novelli R. Geological impact of some tailngs dams in Sardinia, Italy[J]. Environmental Geology and Water Sciences, 1992, 19(3): 147-153.
    【16】 张利成,白丽娜,王灵秀.白云鄂博矿开发利用中放射性废渣对环境的污染及防治[J].内蒙古环境保护,2001,13(1):39-43.
    【17】 赵常兵等.溶质运移理论的发展[J].水利科技与经济,2006,12(8):502-504.
    【18】 王秉忱,杨天行,王金宝等.地下水污染-地下水水质模拟方法[M].北京:北京师范大学出版社,1985.
    【19】 J. Fried. Groundwater Pollution[M]. 1975.
    【20】 L. F. Konikow et al. Computer model of two-dimensional solute transport and dispersion in ground water, 1978.
    【21】 R Willis.地下水水质管理的规划模型.水文地质工程地质译丛,1982,(3).
    【22】 Garve G and Freeze R A. Theoretical analysis of the role of the groundwater flow in the genesis ore deposits Ⅰ mathematical and numerical model. Am. J. Soi, 1984, 284: 1085-1124.
    【23】 Refsgaard A, et al. Three dimensional modeling of groundwater flow and solute transport[J]. Journal of contaminant transport, 1991.
    【24】 Goltz M N and P V Roberts. Using the method of moments to analyze three-dimensional diffusionslimited solute transport from temporal and spatial perspectives[J]. Water Resour. Res, 1996, 23(8): 1575-1585.
    【25】 Crittenden J C, N J Hutzler, D G Geyer, et al. Transport of organic compounds with saturated groundwater flow: Model development and parameter sensitivity[J]. Water Resour. Res, 1996, 22(3): 271-284.
    【26】 Abriola L M and G F Pinder. A mulfiphase approach to the modeling of porous media contamination by organic compounds equation development[J]. Water Resour. Res, 1985, 21(1): 11-18.
    【27】 Miller C T and W J Weber. Modeling organic contaminant partitioning in groundwater systems[J]. Ground Water, 1984, 22(5): 584-592.
    【28】 Barry D A and G Sposito. Analytieal solution of a convection-dispersion model with time-dependent transport coefficients[J]. Water Resour. Res, 1997, 25: 2407-2416.
    【29】 Yates S R. An analytical solution for one-dimensional transport in heterogeneous porous media[j]. Water Resour. Res, 1990, 26: 2331-2338.
    【30】 Gethar L W, et al. Stochastie analysis of macrodispersion in a stratified aquifer[j]. Water Resour. Res, 1979, 15: 1387-1397.
    【31】 Sposito G W, et al. Fundamental Problems in the srochastic convection-dispersion model of solute transport in aquifers field soils[J]. Water Resour. Res, 1980, 22: 77-88.
    【32】 Smith L and F W Sehwartz. Mass transport, A stochastic analysis of macroscopic dispersion[J]. Water Resour. Res, 1998, 16(2): 303-313.
    【33】 Tang D H, et al. Stochastic modeling of mass transport in a random velocity field[J]. Water Resour. Res, 1982, 18(2): 231-244.
    【34】 Bubin Y. Stochastic modeling of macrodispersion in heterogeneous porous media[J]. Water Resour. Res, 1990, 26(1): 133-141.
    【35】 Grisak G E, J F Pickens, et al. Solute Transport Through Fractured Media, 1, The Effect of Matrix Diffusion [J]. Water Resour. Res, 1980(4): 719-730.
    【36】 Noorishad J, et al. An Upstream Finite Element Method for Solution of Transient Transport Equation in Fractured Porous Media[J]. Water Resour. Res, 1982(5): 588-596.
    【37】 王晓红,Laplace 变换边界积分方程与Schapery数值反演法模拟溶质运移问题[J].水文地质工程地质,1997,41(6):19-22.
    【38】 成建梅,胡进武.饱和水流溶质运移问题数值解法综述[J].水文地质工程地质,2003,47(2):99-106.
    【39】 段祥宝,朱亮.地下水污染运移模拟及最优估计[J].水动力学研究与进展,1996,(5):513-519.
    【40】 高俊合,朱学愚,赵维炳等.非饱和带溶质运移问题的SUPG有限元解法[J].河海大学学报,1998,(1):54-58.
    【41】 Zheng C. Extension of the Method of Characteristics for Simulation of Solute Transport in Three Dimensions[J]. Ground Water, 1993, 31(3): 456-465.
    【42】 马腾,王焰新.U(vi)在浅层地下水系统中迁移的反应-输运耦合模拟-以我国南方核工业某尾矿库为例[J].中国地质大学学报,2000,25(5):456-461.
    【43】 李建国,郭择德.某尾矿库周围环境中污染物生态转移研究[J].辐射防护,2002,22(1):9-14.
    【44】 徐晓春,王军,李援,陈天虎.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.
    【45】 饶运章,侯运炳.尾矿库废水酸化与重金属污染规律研究[J].辽宁工程技术大学学报,2004,23(3):430-432.
    【46】 郭择德,卫为强,程理,李建国,韩新生.尾矿库中U、Th和~(226)Ra在亚粘土层的垂向迁移[J].辐射防护,2005,25(1):24-30.
    【47】 李培良,李国政,刘冠峰.某尾矿库渗漏水对地下水的影响分析[J].黄金分析与环保,2005,26(12):45-47.
    【48】 徐乐昌,周星火,詹旺生等.某铀矿尾矿堆场受污染地下水的渗透反应墙修复初探[J].铀矿防冶,2006,25(3):153-157.
    【49】 谢水波,刘奇,张晓健等.尾矿库区地下水中U(Ⅵ)的反应—输运耦合模拟及其参数分析[J].水科学进展,2006,17(6):803-807.
    【50】 岩土工程手册.中国建筑工业出版社,1994.
    【51】 徐宏达.上游式尾矿坝的沉积规律[J].有色矿山,2003,32(5):40-49.
    【52】 杨春福.中下游式尾矿坝设计概要[J].金属矿山,1999,28(3):33-36.
    【53】 郭晗曙.延长峨口铁矿尾矿库服务年限的途径[J].金属矿山,2000,35(5):45-46.
    【54】 C.斯特拉牵.尾矿坝的运行特征[J].国外金属矿山,2002,24(4):36-41.
    【55】 徐宏达.我国尾矿库病害事故统计分析[J].工业建筑,2001,31(1):69-71.
    【56】 王凤江,张作为.尾矿砂的堆存特征及其抗剪强度特性[J].岩土工程技术,2003,17(4):209-212.
    【57】 柳厚祥等.尾矿坝二维固结稳定渗流分析[J].矿冶工程,2002,22(4):8-14.
    【58】 尹光志,魏作安,许江.细粒尾矿及其堆坝稳定性分析[M].重庆:重庆大学出版社,2004.
    【59】 段蔚平,汪斌.尾矿坝非饱和带滞水曲线模型的建立及应用[J].岩土力学,2004,34(S1):95-98.
    【60】 仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310
    【61】 某地质勘察局.某尾矿坝勘察报告[R].西安:某矿业公司,2006.
    【62】 某地质矿产研究所.某矿业公司尾矿库延长服务年限可行性研究报告(环评)[R].西安:某矿业公司,2006.
    【63】 孙纳正等.地下水污染[M].北京:地质出版社,1989:33-36.
    【64】 张宇峰,张雪英等.土壤中水动力弥散系数的研究进展[J].环境污染治理技术与设备,2003,4(7):8-12.
    【65】 吴耀国,田春声等.本溪郑家潜水含水层二维水动力弥散试验及其结果分析[J].水文地质工程地质,1998,42(1):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700