用户名: 密码: 验证码:
大型水泵导轴承润滑与密封研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水泵站装机容量7000多万kW,其中,轴流泵及导叶式混流泵占很大比例,特别是正在建设的南水北调东线工程,全部采用大型轴流泵、混流泵或贯流泵。导轴承是大型水泵最为关键的易磨易损部件,故障率高,导轴承故障占泵机组故障的50%以上。研究水泵导轴承的润滑与密封特性,对减小轴承摩擦损耗,降低故障率,提高可靠性,节省泵站维护检修费用有重要意义。本文主要工作:
     介绍了大型水泵导轴承的结构形式、工作原理和密封装置类型,针对导轴承应用中存在的问题,从设计、制造、安装等方面分析大型立式水泵导轴承荷载的影响因素,建立了导轴承概率荷载理论。利用流体动力学和摩擦润滑学研究水泵导轴承的润滑和密封特性。计算了油润滑导轴承上油压力和润滑油量,分析了可能发生的润滑故障;计算了清水润滑导轴承所需润滑水量和压力。推导了端面密封、梳齿迷宫密封的泄漏量计算公式和排密封漏水装置的排水量计算公式,计算了典型水泵导轴承的密封漏水量和排漏水量,并对结果进行了分析。最后,从材料、安装、检修、润滑、密封等方面对水泵导轴承进行综合比较,提出了水泵导轴承及其密封装置的选用原则。
     研究结果表明:大型立式水泵导轴承荷载与进水流道和机组制造安装质量、结构形式有关。为了保证油润滑导轴承足够的润滑油压以形成循环,主轴必须具有一定的转速。螺旋槽参数、毕托管上油量和轴承间隙是影响油润滑导轴承润滑可靠性的主要因素。
     正常情况下,端面密封漏水量比梳齿迷宫密封漏水量小得多,但如果端面密封的弹簧脱落,或顶车后静环座不能回落,或动静环承磨面凹凸不平,密封间隙增大,就会造成大量漏水、排水不及而危及轴承。
     油润滑导轴承承载力大,但密封装置易失效。相比而言,水润滑导轴承结构简单,润滑条件容易得到保证,不存在浸水受损问题,但承载力小、耐磨性差。
Water pump station installed capacity in China is over 70,000 MW. The axial-flow pumps and diffuser mixed-flow pumps are in large proportion of them. Especially, large axial-flow pumps, diffuser mixed-flow pumps or tubular pumps are adopted in all pump stations of Eastern Route of South-to-North Water Transfer Project, which is being constructed. The guide bearing is the key part of a large water pump for its grindability. Its failure rate is very high, and its failure is above 50% of pump unit failure. Studying the guide bearing lubrication and seal performance of the large water pump is significant to decreasing bearing friction loss, lowering failure rate, improving the reliability, saving the maintenance and overhaul cost of pump station. Main works in this dissertation are as follows:
     Structural styles, operation principles and sealing device types of large pump guide bearings were introduced. Aiming at the open question of guide bearings in application, the influencing factors of guide bearing load of large vertical pumps were analyzed from design, manufacture and installation. The probability load theory of the guide bearing was established. Lubricating and sealing characteristics of the guide bearing were researched by the aid of hydrodynamics and tribology. Lubricating oil pressure and quantity of guide bearings were calculated, probable lubricating malfunctions were analyzed, lubricating water quantity and pressure of clean-water-lubricated guide bearings were calculated. The leakage rate formula of mechanical face seals and comb labyrinth seals, and leakage drainage formula of seal leakage draining device were deduced. The leakage rate and leakage drainage rate of typical guide bearings were calculated. At last, the water pump guide bearings were comprehensively compared from materials, installation, inspection, lubrication, seal, and etc. The selection principles of water pump guide bearings and seal devices were put forward.
     The results show that guide bearing load of large vertical water pump has something to do with inlet passage of pump station, pump unit manufacture and installation quality, structure pattern. In order to guarantee enough lubricating oil pressure of oil-lubricated guide bearings to form circulation, shaft must have certain rotational speed. Spiral groove parameter, oil quantity up through pitot tube and bearing clearance are the main factors that influence lubricating reliability of oil-lubricated guide bearings.
     In normal conditions,the leakage rate of mechanical face seal is much less than comb labyrinth seal. But if the elastic springs of mechanical face seal pull off, or stationary seat can’t fall back after jacking, or wear faces of rotor and stationary seal ring are irregularity, sealing clearance becomes larger, so the bearings are endangered by large water leakage which can’t be drained in time.
     The bearing capacity of oil-lubricated guide bearings is large, but sealing devices are easy to fail. In contrast, the structure of water-lubricated guide bearing is simple, the lubricating conditions are easy guaranteed, without the problem damaged by immersion, but the bearing capacity is small, and resistance to wear is poor.
引文
[1] 仇宝云,汤正军,黄海田等.大型水泵机组大修与大修周期分析.水泵技术,1998(3):40~42
    [2] 仇宝云,王彤俊,魏强林等.大型泵站常见故障分析.排灌机械,1999(2):20~24
    [3] 吴仁荣.水润滑轴承在离心泵结构中的应用.机电设备,1997(4),28~30
    [4] 仇宝云,魏强林,汤正军.护管式清水润滑轴承在大型立式水泵中的应用.农业工程学报,1999,15(3):256~258
    [5] 杜刚海主编.大型泵站机组安装与检修.北京:水利电力出版社,1994
    [6] 魏强林,黄海田,仇宝云.P23 酚醛塑料在大型立式水泵导轴承上的应用.水泵技术,1999(2):26~28
    [7] 杨洪群,吴玲玲.泵站机组水导轴承的研究.排灌机械,2004,22(3):22~24
    [8] 杨树雄.大型卧式轴流泵水导轴承的研究.排灌机械,2003,21(1):15~17
    [9] 黄毅.斜轴伸水泵的导轴承材料应用分析.水利水电科技进展,2003,23(6):47~48
    [10] 杨洪群,谢伟东,张建化.卧(斜)式水泵水导轴承存在的问题及其选型.水利水电科技进展,2004,24(1):57~59
    [11] 杨成仁,苏逢荃,王优强.水润滑橡胶轴承发展与研究简介.青岛建筑工程学院学报,1997,18(4):44~48
    [12] 杨成仁,苏逢荃,王优强.八纵向沟水润滑橡胶轴承润滑机理的实验研究.青岛建筑工程学院学报,1995,16(4):51~58
    [13] 王优强,杨成仁.水润滑橡胶轴承研究进展.润滑与密封,2001(2):65~67
    [14] 王优强,李鸿琦,佟景伟.水润滑橡胶轴承.轴承,2002(10):41~43,47
    [15] 王优强,李鸿琦.水润滑赛龙轴承及其润滑性能综述.润滑与密封,2003(1):101~104
    [16] 周泽华,王家序.陶瓷在水润滑轴承中的应用陶瓷工程,2000(12):29~31
    [17] 卓铭红.立式轴流、混流泵用陶瓷轴承.排灌机械,2003,21(2):18~21
    [18] 张葵.陶瓷轴承的性能及发展动态.轴承,2002(5):33~35
    [19] 吴仁荣.水润滑滑动轴承设计计算.机电设备,1997(6):30~32,35
    [20] 仇宝云,黄海田,魏强林等.大型立式水泵油轴承改水轴承的应用研究.流体机械,2000:28(1):35~37
    [21] 王灵沼,于俊祥,郝红芳.提高水润滑推力轴承承载力的探讨.中小型电机,1999,26(2):46~47
    [22] 吴炳洪.立轴导叶式泵抽送泥砂水的防护措施.排灌机械,1985(1):63
    [23] 王春林,杨敏官,郭晓梅.液下泵新型导轴承的研究.排灌机械,2002,20(2):18~20
    [24] 仇宝云.大型立式轴流泵导轴承荷载分析计算.农业机械学报,2000,31(1):58~61
    [25] 雍成林,阚永庚.大型立式泵水导轴承安装方法的改进.水泵技术,2003(5):36~37,26
    [26] Howard Smitb. Is the Writing on the Wall for Oil Lubricated Bearings in Pumps. World Pumps, December, 1995: 38~41
    [27] Robin Kyte. Advanced Bearing Technology Improves Pump Performance. World Pumps, July, 2002: 42~45
    [28] Rick Bruggeman. Innovative Ceramic Sliding Bearings. World Pumps, October, 2002: 30~32
    [29] David Mikalonis. New Hybrid Bearings Enable Maximum Pump Performance with Minimum Lubrication. World Pumps, June, 2003: 37~39
    [30] Tomoko Hirayama, Takeo Sakurai, Hiroshi Yabe. A Theoretical Analysis Considering Cavitation Occurrence in Oil-Lubricated Spiral-Grooved Journal Bearings With Experimental Verification. Journal of Tribology, 2004, Vol. 126: 490~498
    [31] Hyun Cheon Ha. Preload Effects of a Guide Bearing on the Metal Temperature and the Shaft Vibration. Journal of Tribology, 2001, Vol. 123: 144~150
    [32] 吴仁荣.水润滑轴承在离心泵结构中的应用.机电设备,1997(4),28~30
    [33] 霍斯德·契可斯.摩擦学.刘钟华,王夏锹,陈善雄,吴鹿鸣译.北京:机械工业出版社,1984
    [34] 张直明主编.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986
    [35] 马艳艳,李桂国.动载滑动轴承润滑设计计算的研究进展.润滑与密封.2003(4):96~98
    [36] 池长青著.流体力学润滑.北京:国防工业出版社,1998
    [37] Hahn H W. Dynamically loaded journal bearing of finite length. Conference on Lubrication and Wear Clut, 1957
    [38] 高明,龙劲松.动载滑动轴承轴心轨迹计算机模拟中 Holland 方法的改进.西南交通大学学报,1997(6):294~299
    [39] Booker J F. Dynamically Loaded Journal Bearings:Numerical Application of the Mobility Method. ASME Journal of Lubrication Technology, Vol. 93, 168~176
    [40] 徐海波,朱均.离心力和热弹变形对大型水轮机推力轴承性能的影响.西安交通大学学报,1993,27(3):63~71
    [41] 彭晋民,王家序,于江波等.水润滑塑料合金轴承润滑机理研究.润滑与密封,2002(3):5~9
    [42] Xiao-Li Wang, Ke-Qin Zhu. A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing (T1516). Tribology International, 2004(37): 481~490
    [43] Kiyoshi Hatakenaka, Masato Tanaka, Kenji Suzuki. A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered. Journal of Tribology, 2002, Vol. 124 : 494~505
    [44] 郭力,李波.高速流体动压滑动轴承的润滑分析.湖南轻工业高等专科学校学报, 2002,14(2):1~3
    [45] 关凯书,张美华,吕宝君.滑动轴承最小油膜厚度的模糊优化设计.莱阳农学院学报, 1997,14(1):76~78
    [46] 唐钟麟.液膜滑动轴承统一模型解法与分析.机械科学与技术,1998,17(5):707~713
    [47] 夏守浩,安琦.油水两相流对滑动轴承油膜压力的影响.机械科学与技术,1999,18(3):481~482
    [48] J. K. Martin, D. W. Parkins. Theoretical Studies of a Continuously Adjustable Hydrodynamic Fluid Film Bearing. Journal of Tribology, 2002, Vol.124: 203~211
    [49] 裘祖干,张长松.动载径向粗糙轴承分析.内燃机学报,1993,11(2):159~164
    [50] 马希直,徐华,朱均.圆形可倾瓦推力轴承入油边界条件的确定.摩擦学学报,2001,21(2):143~146
    [51] 张新敏,王野牧,王世杰等.湍流工况水润滑导轴承流场分析及承载能力计算.沈阳工业大学学报,1998,20(4),41~45
    [52] 奚翠著.密封装置设计基础.安徽:安徽科学技术出版社,1987
    [53] 王玉明,杨惠霞,蒋南.流体密封技术.液压气动与密封,2004(3):1~5
    [54] 刘白眉,张振育,顾卫中.小型深沟球轴承密封性能探讨.轴承,2001(6):38,41
    [55] 王者文,范宗霖,王彦明等.螺旋密封在流体机械中的应用.流体机械,2004,32(2):13~16
    [56] 李照成,杨咸启.轴承密封圈变形的非线性有限元分析.轴承,2004(11):20~23
    [57] 李松涛,许庆余.迷宫密封—滑动轴承—转子系统的非线性动力稳定性.航空学报,2003,24(3):226~229
    [58] 周思年,黄爱忠,阚永庚等.ZL30-7 型轴流泵轴承密封装置的改进.中国农村水利水电,2002(3):40~41
    [59] 周思年,阚永庚,黄爱忠.大型立式轴流泵轴承密封装置的改进.水泵技术,2000(5):42~44
    [60] 张振芳.轴流泵易损零部件过早损坏的原因浅析.排灌机械,1990(4):21~24
    [61] Cole, J.A., and C.J.Hughes. Oil Flow and Film Extent in Complete Journal Bearings, Proc. Inst. Mech. Engrs. ( London), Vol. 170, No. 17, 1956
    [62] 姜培林,虞烈.电机不平衡磁拉力及其刚度的计算.大电机技术,1998(4):32~34
    [63] 陈炎炉主编.大型电力排灌站.北京:水利电力出版社,1984
    [64] 关醒凡.泵的理论与设计.北京:机械工业出版社,1987
    [65] 仇宝云.大中型水泵装置理论与关键技术.北京:中国水利水电出版社,2005
    [66] 江苏机电排灌工程研究所.江都第一抽水站更新改造现场测试报告.1996
    [67] 仇宝云,林海江,黄季艳等.大型立式轴流泵叶片进口流场及其对水泵影响研究.机械工程学报,2005,41(4):28~34
    [68] 沈阳水泵研究所、中国农业机械科学研究所主编.叶片泵设计手册.北京:机械工业出版社,1983
    [69] 哈尔滨大电机研究所编.水轮机设计手册.北京:机械工业出版社,1976
    [70] 何凯希.改进的稀油润滑筒式导轴承的结构计算方法.大电机技术,1997(2):47~51
    [71] 中国机械工程学会摩擦学学会《润滑工程》编写组.润滑工程.北京:机械工业出版社,1986
    [72] 吴建康,马向能,黄玉盈.不同设计参数下螺旋槽径向液体润滑轴承油膜稳定性的比较计算.摩擦学学报,1999(1):57~60
    [73] 成大先主编.机械设计手册—润滑与密封.北京:化学工业出版社,2004
    [74] 顾永泉著.机械密封实用技术.北京:机械工业出版社,2001
    [75] E.Mayer. Mechanical seals, London, Newnesbutterworths, 1977
    [76] 仇宝云.轴流泵后导叶出流环量的计算分析与实验研究.水泵技术,1991(3):21~27
    [77] 刘后桂编著.密封技术.湖南:湖南科学技术出版社,1981
    [78] 高光藩,张牢牢.迷宫密封性能影响因素分析.风机技术,1997(6):17~21
    [79] Scharrer, J.K. Rotor dynamic Coefficients for Stepped Labyrinth Gas Seals. ASME Journal of Triblology, 1989, 111:101-107
    [80] 李均卿,刁元康译.非接触密封.北京:机械工业出版社,1986
    [81] Kearton. W. J. et al. Leakage of Air through Labyrinth Glands of Staggered Type. Proc. I. Mech. E. ,1952:166
    [82] 高光藩,白凤娥,刘俊明.径向迷宫密封泄漏速率计算方法的分析.风机技术,1997(2):9~11
    [83] Martin. H. M. Steam Leakage in dummies of the Ljungstrom Type . Engineering, 1919: 107
    [84] Egli.A. The Leakage of Steam Through Labyrinth Seals. Trans. ASME, 1935:57
    [85] Kearton. W. J. The Flow of Air through Radial Labyrinth Glands. Proc. I. Mech. E, 1955:169
    [86] 何兆太,刘鹄然.用雷诺方程分析迷宫式密封的密封效果.润滑与密封,2002,2,80
    [87] 刘鹄然,胡青青,方志明等.用雷诺方程分析迷宫式密封的泄漏.润滑与密封,2003,6,56~57
    [88] 吕省三.大泵橡胶轴承运行初探.水力机械,1982(2):100~104
    [89] 林海江,仇宝云.大中型水泵导轴承材料比较选用研究.水泵技术,2005(6):22~26
    [90] 曲建俊,梁风,孙守连.弹性金属塑料轴瓦的特性及应用展望.密封与润滑,2001(1):55~57
    [91] 王海宝,杨大壮,吴光洁.水润滑轴承材料设计.润滑与密封,2002(3):82~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700